Thursday, November 28, 2024
Google search engine
HomeData Modelling & AISorting objects using In-Place sorting algorithm

Sorting objects using In-Place sorting algorithm

Given an array of red, blue and yellow objects, the task is to use an in-place sorting algorithm to sort the array in such a way that all the blue objects appear before all the red objects and all the red objects appear before all the yellow objects.
Examples: 
 

Input: arr[] = {“blue”, “red”, “yellow”, “blue”, “yellow”} 
Output: blue blue red yellow yellow
Input: arr[] = {“red”, “blue”, “red”, “yellow”, “blue”} 
Output: blue blue red red yellow 
 

 

Approach: First of all map the values of blue, red and yellow objects to 1, 2 and 3 respectively using a hash table. Now use these mapped values whenever a comparison of two objects is required. So, the algorithm will sort the array of objects such that all blue objects ( mapping to value 1 ) will appear first, then all red objects ( mapping to value 2 ) and then all yellow objects ( mapping to value 3 ).
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Partition function which will partition
// the array and into two parts
int partition(vector<string>& objects, int l, int r,
            unordered_map<string, int>& hash)
{
    int j = l - 1;
 
    int last_element = hash[objects[r]];
 
    for (int i = l; i < r; i++) {
 
        // Compare hash values of objects
        if (hash[objects[i]] <= last_element) {
            j++;
            swap(objects[i], objects[j]);
        }
    }
 
    j++;
 
    swap(objects[j], objects[r]);
 
    return j;
}
 
// Classic quicksort algorithm
void quicksort(vector<string>& objects, int l, int r,
                    unordered_map<string, int>& hash)
{
    if (l < r) {
        int mid = partition(objects, l, r, hash);
        quicksort(objects, l, mid - 1, hash);
        quicksort(objects, mid + 1, r, hash);
    }
}
 
// Function to sort and print the objects
void sortObj(vector<string>& objects)
{
 
    // Create a hash table
    unordered_map<string, int> hash;
 
    // As the sorting order is blue objects,
    // red objects and then yellow objects
    hash["blue"] = 1;
    hash["red"] = 2;
    hash["yellow"] = 3;
 
    // Quick sort function
    quicksort(objects, 0, int(objects.size() - 1), hash);
 
    // Printing the sorted array
    for (int i = 0; i < objects.size(); i++)
        cout << objects[i] << " ";
}
 
// Driver code
int main()
{
 
    // Let's represent objects as strings
    vector<string> objects{ "red", "blue",
                            "red", "yellow", "blue" };
 
    sortObj(objects);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
class GFG
{
 
// Partition function which will partition
// the array and into two parts
static int partition(Vector<String> objects, int l, int r,
                        Map<String, Integer> hash)
{
    int j = l - 1;
 
    int last_element = hash.get(objects.get(r));
 
    for (int i = l; i < r; i++)
    {
 
        // Compare hash values of objects
        if (hash.get(objects.get(i)) <= last_element)
        {
            j++;
            Collections.swap(objects, i, j);
        }
    }
 
    j++;
 
    Collections.swap(objects, j, r);
 
    return j;
}
 
// Classic quicksort algorithm
static void quicksort(Vector<String> objects, int l, int r,
                         Map<String, Integer> hash)
{
    if (l < r)
    {
        int mid = partition(objects, l, r, hash);
        quicksort(objects, l, mid - 1, hash);
        quicksort(objects, mid + 1, r, hash);
    }
}
 
// Function to sort and print the objects
static void sortObj(Vector<String> objects)
{
 
    // Create a hash table
    Map<String, Integer> hash = new HashMap<>();
 
    // As the sorting order is blue objects,
    // red objects and then yellow objects
    hash. put("blue", 1);
    hash. put("red", 2);
    hash. put("yellow", 3);
 
    // Quick sort function
    quicksort(objects, 0, objects.size() - 1, hash);
 
    // Printing the sorted array
    for (int i = 0; i < objects.size(); i++)
        System.out.print(objects.get(i) + " ");
}
 
// Driver code
public static void main(String []args)
{
    // Let's represent objects as strings
    Vector<String> objects = new Vector<>(Arrays.asList( "red", "blue",
                                                         "red", "yellow",
                                                         "blue" ));
 
    sortObj(objects);
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python3 implementation of the approach
 
# Partition function which will partition
# the array and into two parts
objects = []
hash = dict()
 
def partition(l, r):
    global objects, hash
    j = l - 1
 
    last_element = hash[objects[r]]
 
    for i in range(l, r):
 
        # Compare hash values of objects
        if (hash[objects[i]] <= last_element):
            j += 1
            (objects[i],
             objects[j]) = (objects[j],
                            objects[i])
 
    j += 1
 
    (objects[j],
     objects[r]) = (objects[r],
                    objects[j])
 
    return j
 
# Classic quicksort algorithm
def quicksort(l, r):
    if (l < r):
        mid = partition(l, r)
        quicksort(l, mid - 1)
        quicksort(mid + 1, r)
 
# Function to sort and print the objects
def sortObj():
    global objects, hash
 
    # As the sorting order is blue objects,
    # red objects and then yellow objects
    hash["blue"] = 1
    hash["red"] = 2
    hash["yellow"] = 3
 
    # Quick sort function
    quicksort(0, int(len(objects) - 1))
 
    # Printing the sorted array
    for i in objects:
        print(i, end = " ")
 
# Driver code
 
# Let's represent objects as strings
objects = ["red", "blue", "red",
               "yellow", "blue"]
 
sortObj()
 
# This code is contributed
# by Mohit Kumar


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Partition function which will partition
// the array and into two parts
static int partition(List<String> objects, int l, int r,
                           Dictionary<String, int> hash)
{
    int j = l - 1;
    String temp;
    int last_element = hash[objects[r]];
 
    for (int i = l; i < r; i++)
    {
 
        // Compare hash values of objects
        if (hash[objects[i]] <= last_element)
        {
            j++;
            temp = objects[i];
            objects[i] = objects[j];
            objects[j] = temp;
        }
    }
 
    j++;
 
    temp = objects[r];
    objects[r] = objects[j];
    objects[j] = temp;
 
    return j;
}
 
// Classic quicksort algorithm
static void quicksort(List<String> objects, int l, int r,
                            Dictionary<String, int> hash)
{
    if (l < r)
    {
        int mid = partition(objects, l, r, hash);
        quicksort(objects, l, mid - 1, hash);
        quicksort(objects, mid + 1, r, hash);
    }
}
 
// Function to sort and print the objects
static void sortObj(List<String> objects)
{
 
    // Create a hash table
    Dictionary<String,
               int> hash = new Dictionary<String,
                                          int>();
 
    // As the sorting order is blue objects,
    // red objects and then yellow objects
    hash.Add("blue", 1);
    hash.Add("red", 2);
    hash.Add("yellow", 3);
 
    // Quick sort function
    quicksort(objects, 0, objects.Count - 1, hash);
 
    // Printing the sorted array
    for (int i = 0; i < objects.Count; i++)
        Console.Write(objects[i] + " ");
}
 
// Driver code
public static void Main(String []args)
{
    // Let's represent objects as strings
    List<String> objects = new List<String>{"red", "blue",
                                            "red", "yellow",
                                            "blue"};
 
    sortObj(objects);
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
// Javascript implementation of the approach
 
// Partition function which will partition
// the array and into two parts
function partition(objects, l, r, hash)
{
    let j = l - 1;
   
    let last_element = hash.get(objects[r]);
   
    for (let i = l; i < r; i++)
    {
   
        // Compare hash values of objects
        if (hash.get(objects[i]) <= last_element)
        {
            j++;
            let temp = objects[i];
            objects[i] = objects[j];
            objects[j] = temp;
        }
    }
   
    j++;
   
    let temp = objects[r];
            objects[r] = objects[j];
            objects[j] = temp;
   
    return j;
}
 
// Classic quicksort algorithm
function quicksort(objects, l, r, hash)
{
    if (l < r)
    {
        let mid = partition(objects, l, r, hash);
        quicksort(objects, l, mid - 1, hash);
        quicksort(objects, mid + 1, r, hash);
    }
}
 
// Function to sort and print the objects
function sortObj(objects)
{
 
    // Create a hash table
    let hash = new Map();
   
    // As the sorting order is blue objects,
    // red objects and then yellow objects
    hash. set("blue", 1);
    hash. set("red", 2);
    hash. set("yellow", 3);
   
    // Quick sort function
    quicksort(objects, 0, objects.length - 1, hash);
   
    // Printing the sorted array
    for (let i = 0; i < objects.length; i++)
        document.write(objects[i] + " ");
}
 
// Driver code
let objects = ["red", "blue","red", "yellow", "blue"];
sortObj(objects);
 
// This code is contributed by patel2127
</script>


Output: 

blue blue red red yellow

 

Time complexity: O(n^2) since using quicksort

Auxiliary space: O(n) because using hash table 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments