Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIGenerate permutation of 1 to N such that absolute difference of consecutive...

Generate permutation of 1 to N such that absolute difference of consecutive numbers give K distinct integers

Given two integers N and K where K < N, the task is to generate a permutation of integers from 1 to N such that the absolute difference of all the consecutive integers give exactly K distinct integers.

Examples:  

Input: N = 3, K = 2 
Output: 1 3 2 
|1 – 3| = 2 and |3 – 2| = 1 which gives 2 distinct integers (2 and 1)

Input: N = 5, K = 4 
Output: 1 5 2 4 3 
|1 – 5| = 4, |5 – 2| = 3, |2 – 4| = 2 and |4 – 3| = 1 gives 4 distinct integers i.e. 4, 3, 2 and 1 
 

Approach: The problem can be easily solved by simple observation. At the odd indices place increasing sequence 1, 2, 3, … and at the even indices place the decreasing sequence N, N-1, N-2, … and so on.
For N = 10, a permutation with distinct integers for consecutive absolute difference can be 1 10 2 9 3 8 4 7 5 6. The consecutive absolute difference gives integers 9, 8, 7 and so on
So, first print K integers of such a sequence then make the rest of the differences equal to 1. The code is quite self explanatory.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to generate a permutation of integers
// from 1 to N such that the absolute difference of
// all the two consecutive integers give K distinct integers
void printPermutation(int N, int K)
{
    // To store the permutation
    vector<int> res;
 
    int l = 1, r = N, flag = 0;
 
    for (int i = 0; i < K; i++) {
 
        if (!flag) {
 
            // For sequence 1 2 3...
            res.push_back(l);
            l++;
        }
        else {
 
            // For sequence N, N-1, N-2...
            res.push_back(r);
            r--;
        }
 
        // Flag is used to alternate between
        // the above if else statements
        flag ^= 1;
    }
 
    // Taking integers with difference 1
 
    // If last element added was r + 1
    if (!flag) {
        for (int i = r; i >= l; i--)
            res.push_back(i);
    }
 
    // If last element added was l - 1
    else {
        for (int i = l; i <= r; i++)
            res.push_back(i);
    }
 
    // Print the permutation
    for (auto i : res)
        cout << i << " ";
}
 
// Driver code
int main()
{
    int N = 10, K = 4;
 
    printPermutation(N, K);
 
    return 0;
}


Java




// Java implementation of the above approach
import java.util.Vector;
 
class GFG
{
    // Function to generate a permutation
    // of integers from 1 to N such that the
    // absolute difference of all the two
    // consecutive integers give K distinct integers
    static void printPermutation(int N, int K)
    {
        // To store the permutation
        Vector<Integer> res = new Vector<>();
 
        int l = 1, r = N, flag = 0;
 
        for (int i = 0; i < K; i++)
        {
            if (flag == 0)
            {
                // For sequence 1 2 3...
                res.add(l);
                l++;
            }
            else
            {
                // For sequence N, N-1, N-2...
                res.add(r);
                r--;
            }
 
            // Flag is used to alternate between
            // the above if else statements
            flag ^= 1;
        }
 
        // Taking integers with difference 1
        // If last element added was r + 1
        if (flag != 1)
        {
            for (int i = r; i >= l; i--)
            {
                res.add(i);
            }
        }
        // If last element added was l - 1
        else
        {
            for (int i = l; i <= r; i++)
            {
                res.add(i);
            }
        }
 
        // Print the permutation
        for (Integer i : res)
        {
            System.out.print(i + " ");
        }
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int N = 10, K = 4;
        printPermutation(N, K);
         
    }
}
 
// This code is contributed by
// 29AjayKumar


Python3




# Python 3 implementation of the approach
 
# Function to generate a permutation
# of integers from 1 to N such that the
# absolute difference of all the two
# consecutive integers give K distinct
# integers
def printPermutation(N, K):
 
    # To store the permutation
    res = list();
 
    l, r, flag = 1, N, 0
 
    for i in range(K):
 
        if flag == False:
             
            # For sequence 1 2 3...
            res.append(l)
            l += 1
     
        else:
             
            # For sequence N, N-1, N-2...
            res.append(r);
            r -= 1;
 
    # Flag is used to alternate between
    # the above if else statements
        flag = flag ^ 1;
 
    # Taking integers with difference 1
 
    # If last element added was r + 1
    if flag == False:
        for i in range(r, 2, -1):
            res.append(i)
 
    # If last element added was l - 1
    else:
        for i in range(l, r):
            res.append(i)
 
    # Print the permutation
    for i in res:
        print(i, end = " ")
 
# Driver code
N, K = 10, 4
printPermutation(N, K)
 
# This code is contributed by
# Mohit Kumar 29


C#




// C# implementation of the above approach
using System;
using System.Collections;
 
class GFG
{
    // Function to generate a permutation
    // of integers from 1 to N such that the
    // absolute difference of all the two
    // consecutive integers give K distinct integers
    static void printPermutation(int N, int K)
    {
         
        // To store the permutation
        ArrayList res = new ArrayList();
 
        int l = 1, r = N, flag = 0;
        for (int i = 0; i < K; i++)
        {
            if (flag == 0)
            {
                // For sequence 1 2 3...
                res.Add(l);
                l++;
            }
            else
            {
                // For sequence N, N-1, N-2...
                res.Add(r);
                r--;
            }
 
            // Flag is used to alternate between
            // the above if else statements
            flag ^= 1;
        }
 
        // Taking integers with difference 1
        // If last element added was r + 1
        if (flag != 1)
        {
            for (int i = r; i >= l; i--)
            {
                res.Add(i);
            }
        }
         
        // If last element added was l - 1
        else
        {
            for (int i = l; i <= r; i++)
            {
                res.Add(i);
            }
        }
 
        // Print the permutation
        foreach (int i in res)
        {
            Console.Write(i + " ");
        }
    }
 
    // Driver code
    public static void Main()
    {
        int N = 10, K = 4;
        printPermutation(N, K);       
    }
}
 
// This code is contributed by PrinciRaj1992


PHP




<?php
// PHP implementation of the approach
 
// Function to generate a permutation
// of integers from 1 to N such that the
// absolute difference of all the two
// consecutive integers give K distinct
// integers
function printPermutation($N, $K)
{
     
    // To store the permutation
    $res = array();
 
    $l = 1;
    $r = $N;
    $flag = 0;
 
    for ($i = 0; $i < $K; $i++)
    {
        if (!$flag)
        {
 
            // For sequence 1 2 3...
            array_push($res, $l);
            $l++;
        }
        else
        {
 
            // For sequence N, N-1, N-2...
            array_push($res, $r);
            $r--;
        }
 
        // Flag is used to alternate between
        // the above if else statements
        $flag ^= 1;
    }
 
    // Taking integers with difference 1
 
    // If last element added was r + 1
    if (!$flag)
    {
        for ($i = $r; $i >= $l; $i--)
            array_push($res, $i);
    }
 
    // If last element added was l - 1
    else
    {
        for ($i = l; $i <= $r; $i++)
            array_push($res, $i);
    }
 
    // Print the permutation
    for($i = 0; $i < sizeof($res); $i++)
        echo $res[$i], " ";
}
 
// Driver code
$N = 10;
$K = 4;
 
printPermutation($N, $K);
 
// This code is contributed by Ryuga
?>


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to generate a permutation of
// integers from 1 to N such that the
// absolute difference of all the two
// consecutive integers give K distinct integers
function printPermutation(N, K)
{
     
    // To store the permutation
    var res = [];
    var l = 1, r = N, flag = 0;
 
    for(var i = 0; i < K; i++)
    {
        if (!flag)
        {
             
            // For sequence 1 2 3...
            res.push(l);
            l++;
        }
        else
        {
             
            // For sequence N, N-1, N-2...
            res.push(r);
            r--;
        }
 
        // Flag is used to alternate between
        // the above if else statements
        flag ^= 1;
    }
 
    // Taking integers with difference 1
 
    // If last element added was r + 1
    if (!flag)
    {
        for(var i = r; i >= l; i--)
            res.push(i);
    }
 
    // If last element added was l - 1
    else
    {
        for(var i = l; i <= r; i++)
            res.push(i);
    }
 
    // Print the permutation
    for(var i = 0; i< res.length; i++)
    {
        document.write(res[i] + " ");
    }
}
 
// Driver code
var N = 10, K = 4;
 
printPermutation(N, K);
 
// This code is contributed by noob2000
 
</script>


Output: 

1 10 2 9 8 7 6 5 4 3

 

Time Complexity : O(K+N)

Space Complexity : O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments