Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AILexicographically all Shortest Palindromic Substrings from a given string

Lexicographically all Shortest Palindromic Substrings from a given string

Given a string s of size N. The task is to find lexicographically all the shortest palindromic substrings from the given string.

Examples:

Input: s= “programming” 
Output: a g i m n o p r 
Explanation: 
The Lexicographical shortest palindrome substring for the word “programming” will be the single characters from the given string. Hence, the output is : a g i m n o p r.

Input: s= “neveropen” 
Output: e f g k o r s 

Approach: 
To solve the problem mentioned above, the very first observation is that the shortest palindromic substring will be of size 1. So, as per the problem statement, we have to find all distinct substrings of size 1 lexicographically, which means all the characters in the given string.

Below is the implementation of the above approach: 

C++




// C++ program to find Lexicographically all
// Shortest Palindromic Substrings from a given string
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find all lexicographically
// shortest palindromic substring
void shortestPalindrome(string s)
{
 
    // Array to keep track of alphabetic characters
    int abcd[26] = { 0 };
 
    for (int i = 0; i < s.length(); i++)
        abcd[s[i] - 97] = 1;
 
    // Iterate to print all lexicographically shortest substring
    for (int i = 0; i < 26; i++) {
        if (abcd[i] == 1)
            cout << char(i + 97) << " ";
    }
}
 
// Driver code
int main()
{
    string s = "neveropen";
 
    shortestPalindrome(s);
 
    return 0;
}


Java




// Java program to find Lexicographically all
// Shortest Palindromic Substrings from a given string
class Main
{
    // Function to find all lexicographically
    // shortest palindromic substring
    static void shortestPalindrome(String s)
    {
 
        // Array to keep track of
        // alphabetic characters
        int[] abcd = new int[26];
 
        for (int i = 0; i < s.length(); i++)
            abcd[s.charAt(i) - 97] = 1;
 
        // Iterate to print all lexicographically
        // shortest substring
        for (int i = 0; i < 26; i++)
        {
            if (abcd[i] == 1)
            {
                System.out.print((char)(i + 97) + " ");
            }
        }
    }
 
    // Driver code
    public static void main(String[] args)
    {
        String s = "neveropen";
        shortestPalindrome(s);
    }
}


Python3




# C++ program to find Lexicographically all
# Shortest Palindromic Substrings from a given string
 
# Function to find all lexicographically
# shortest palindromic substring
def shortestPalindrome (s) :
     
    # Array to keep track of alphabetic characters
    abcd = [0]*26
 
    for i in range(len(s)):
        abcd[ord(s[i])-97] = 1
     
    # Iterate to print all lexicographically shortest substring
    for i in range(26):
        if abcd[i]== 1 :
            print( chr(i + 97), end =' ' )
 
# Driver code
s = "neveropen"
 
shortestPalindrome (s)


C#




// C# program to find Lexicographically
// all shortest palindromic substrings
// from a given string
using System;
 
class GFG{
     
// Function to find all lexicographically
// shortest palindromic substring
static void shortestPalindrome(string s)
{
 
    // Array to keep track of
    // alphabetic characters
    int[] abcd = new int[26];
 
    for(int i = 0; i < s.Length; i++)
       abcd[s[i] - 97] = 1;
 
    // Iterate to print all lexicographically
    // shortest substring
    for(int i = 0; i < 26; i++)
    {
       if (abcd[i] == 1)
       {
           Console.Write((char)(i + 97) + " ");
       }
    }
}
 
// Driver code
static public void Main(string[] args)
{
    string s = "neveropen";
    shortestPalindrome(s);
}
}
 
// This code is contributed by AnkitRai01


Javascript




<script>
 
// Javascript program to find Lexicographically all
// Shortest Palindromic Substrings from a given string
 
    // Function to find all lexicographically
    // shortest palindromic substring
    function shortestPalindrome(s)
    {
   
        // Array to keep track of
        // alphabetic characters
        let abcd = Array.from({length: 26}, (_, i) => 0);
   
        for (let i = 0; i < s.length; i++)
            abcd[s[i].charCodeAt()  - 97] = 1;
   
        // Iterate to print all lexicographically
        // shortest substring
        for (let i = 0; i < 26; i++)
        {
            if (abcd[i] == 1)
            {
                document.write(String.fromCharCode(i + 97)  + " ");
            }
        }
    }
 
// Driver Code
     
    let s = "neveropen";
    shortestPalindrome(s.split(''));
                
</script>


Output: 

e f g k o r s

 

Time Complexity: O(N), where N is the size of the string.
Space Complexity: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments