Friday, January 10, 2025
Google search engine
HomeData Modelling & AICorollaries of Binomial Theorem

Corollaries of Binomial Theorem

The expression (a+b)^n denotes (a+b)(a+b)(a+b) ... n times. This can be evaluated as the sum of the terms involving a^k b^{n-k} for k = 0 to n, where the first term can be chosen from n places, second term from (n-1) places, k^{th} term from (n-(k-1)) places and so on. This is expressed as (a+b)^n = \sum\limits_{k=0}^n ^nC_k a^{n-k} b^k . The binomial expansion using Combinatorial symbols is

(a+b)^n = ^nC_0 a^n b^0 + ^nC_1 a^{n-1} b^1 + ^nC_2 a^{n-2} b^2 .. + ^nC_{n-k} a^k b^{n-k} .. +^nC_n a^0 b^n

  • The degree of each term a^k [Tex]b^{n-k} [/Tex]in the above binomial expansion is of the order n.
  • The number of terms in the expansion is n+1.
  • ^nC_k = n!/k!(n-k)! Similarly ^nC_{n-k} = n!/(n-k)!(n-(n-k))! = n!/(n-k)!k! Hence it can be concluded that ^nC_k = ^nC_{n-k} .

Substituting a = 1 and b = x in the binomial expansion, for any positive integer n we obtain (1+x)^n = ^nC_0 + ^nC_1 x^1 + ^nC_2 x^2 ..+ ^nC_n x^n . Corollary 1:

\sum\limits_{k=0}^n ^nC_k = 2^n

for any non-negative integer n. Replacing x with 1 in the above binomial expansion, We obtain ^nC_0 + ^nC_1 + ^nC_2 .. + ^nC_n = (1+1)^n = 2^n . Corollary 2:

\sum\limits_{k=0}^n ^nC_k = 0

for any positive integer n. Replacing x with -1 in the above binomial expansion, We obtain ^nC_0 + ^nC_1 (-1) + ^nC_2 (-1)^2 .. + ^nC_n (-1)^n = (1+(-1))^n = 0 . Corollary 3: Replacing x with 2 in the above binomial expansion, we obtain ^nC_0 + ^nC_1 2 + ^nC_2 2^2 .. + ^nC_n 2^n = (1+2)^n = 3^n In general, it can be said that

\sum\limits_{k=0}^n (2^k) ^nC_k = 3^n

Additionally, one can combine corollary 1 and corollary 2 to get another result, ^nC_0 + ^nC_1 (-1) + ^nC_2 (-1)^2 .. + ^nC_n (-1)^n = (1+(-1))^n = 0 [Tex]^nC_0 + ^nC_2 + .. = ^nC_1 + ^nC_3 + … [/Tex]Sum of coefficients of even terms = Sum of coefficients of odd terms. Since \sum\limits_{k=0}^n ^nC_k = 2^n , 2(^nC_0 + ^nC_2 + ..) = 2^n [Tex]^nC_0 + ^nC_2 + .. = 2^{n-1} [/Tex]

^nC_0 + ^nC_2 + .. = ^nC_1 + ^nC_3 + .. = 2^{n-1}

Counting The coefficients of the terms in the expansion (a+b)^n correspond to the terms of the pascal’s triangle in row n.

(a+b)^0 1 1
(a+b)^1 a+b 1 \ 1
(a+b)^2 a^2+2ab+b^2 1 \ 2 \ 1
(a+b)^3 a^3+3a^2b+3ab^2+b^3 1 \ 3 \ 3 \ 1

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments