Saturday, January 11, 2025
Google search engine
HomeData Modelling & AISmallest missing non-negative integer upto every array index

Smallest missing non-negative integer upto every array index

Given an array arr[] of size N, the task is for every array indices is to find the smallest missing non-negative integer upto that index of the given array.

Examples:

Input: arr[] = {1, 3, 0, 2}
Output: 0 0 2 4
Explanation:
Smallest missing non-negative integer from index 0 to 0 is 0.
Smallest missing non-negative integer from index 0 to 1 is 0.
Smallest missing non-negative integer from index 0 to 2 is 2.
Smallest missing non-negative integer from index 0 to 3 is 4.

Input: arr[] = {0, 1, 2, 3, 5}
Output: 1 2 3 4 4

 

Approach: This problem can be solved using Hashing. Follow the steps below to solve the problem:

  • Initialize a variable, say smNonNeg to store the smallest missing non-negative integers between the start index and the current index of the given array.
  • Initialize an array, say hash[N] to check if smNonNeg present between the start index and the current index or not.
  • Traverse the given array and check if hash[smNonNeg] equal to 0 or not. If found to be true, then print the value of smNonNeg.
  • Otherwise, increment the value of smNonNeg while hash[smNonNeg] not equal to 0.

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the smallest
// missing non-negative integer
// up to every array indices
void smlstNonNeg(int arr[], int N)
{
    // Stores the smallest missing
    // non-negative integers between
    // start index to current index
    int smNonNeg = 0;
 
    // Store the boolean value to check
    // smNonNeg present between start
    // index to each index of the array
    bool hash[N + 1] = { 0 };
 
    // Traverse the array
    for (int i = 0; i < N; i++) {
 
        // Since output always lies
        // in the range[0, N - 1]
        if (arr[i] >= 0 and arr[i] < N) {
            hash[arr[i]] = true;
        }
 
        // Check if smNonNeg is
        // present between start index
        // and current index or not
        while (hash[smNonNeg]) {
            smNonNeg++;
        }
 
        // Print smallest missing
        // non-negative integer
        cout << smNonNeg << " ";
    }
}
 
// Driver Code
int main()
{
    int arr[] = { 0, 1, 2, 3, 5 };
    int N = sizeof(arr) / sizeof(arr[0]);
    smlstNonNeg(arr, N);
}


Java




// Java program to implement
// the above approach
import java.io.*;
import java.util.Arrays;
 
class GFG{
  
// Function to print the smallest
// missing non-negative integer
// up to every array indices
static void smlstNonNeg(int arr[], int N)
{
     
    // Stores the smallest missing
    // non-negative integers between
    // start index to current index
    int smNonNeg = 0;
  
    // Store the boolean value to check
    // smNonNeg present between start
    // index to each index of the array
    Boolean[] hash = new Boolean[N + 1];
    Arrays.fill(hash, false);
 
    // Traverse the array
    for(int i = 0; i < N; i++)
    {
         
        // Since output always lies
        // in the range[0, N - 1]
        if (arr[i] >= 0 && arr[i] < N)
        {
            hash[arr[i]] = true;
        }
  
        // Check if smNonNeg is
        // present between start index
        // and current index or not
        while (hash[smNonNeg])
        {
            smNonNeg++;
        }
  
        // Print smallest missing
        // non-negative integer
        System.out.print(smNonNeg + " ");
    }
}
  
// Driver Code
public static void main (String[] args)
{
    int arr[] = { 0, 1, 2, 3, 5 };
    int N = arr.length;
     
    smlstNonNeg(arr, N);
}
}
 
// This code is contributed by sanjoy_62


Python3




# Python3 program to implement
# the above approach
 
# Function to print smallest
# missing non-negative integer
# up to every array indices
def smlstNonNeg(arr, N):
     
    # Stores the smallest missing
    # non-negative integers between
    # start index to current index
    smNonNeg = 0
 
    # Store the boolean value to check
    # smNonNeg present between start
    # index to each index of the array
    hash = [0] * (N + 1)
 
    # Traverse the array
    for i in range(N):
 
        # Since output always lies
        # in the range[0, N - 1]
        if (arr[i] >= 0 and arr[i] < N):
            hash[arr[i]] = True
 
        # Check if smNonNeg is
        # present between start index
        # and current index or not
        while (hash[smNonNeg]):
            smNonNeg += 1
 
        # Print smallest missing
        # non-negative integer
        print(smNonNeg, end = " ")
 
# Driver Code
if __name__ == '__main__':
     
    arr = [ 0, 1, 2, 3, 5 ]
    N = len(arr)
     
    smlstNonNeg(arr, N)
 
# This code is contributed by mohit kumar 29


C#




// C# program to implement
// the above approach
using System;
  
class GFG{
   
// Function to print the smallest
// missing non-negative integer
// up to every array indices
static void smlstNonNeg(int[] arr, int N)
{
     
    // Stores the smallest missing
    // non-negative integers between
    // start index to current index
    int smNonNeg = 0;
   
    // Store the boolean value to check
    // smNonNeg present between start
    // index to each index of the array
    bool[] hash = new bool[N + 1];
     
    for(int i = 0; i < N; i++)
    {
        hash[i] = false;
    }
     
    // Traverse the array
    for(int i = 0; i < N; i++)
    {
         
        // Since output always lies
        // in the range[0, N - 1]
        if (arr[i] >= 0 && arr[i] < N)
        {
            hash[arr[i]] = true;
        }
   
        // Check if smNonNeg is
        // present between start index
        // and current index or not
        while (hash[smNonNeg])
        {
            smNonNeg++;
        }
   
        // Print smallest missing
        // non-negative integer
        Console.Write(smNonNeg + " ");
    }
}
   
// Driver Code
public static void Main ()
{
    int[] arr = { 0, 1, 2, 3, 5 };
    int N = arr.Length;
      
    smlstNonNeg(arr, N);
}
}
 
// This code is contributed by code_hunt


Javascript




<script>
 
// Javascript program to implement
// the above approach
 
// Function to print the smallest
// missing non-negative integer
// up to every array indices
function smlstNonNeg(arr, N)
{
     
    // Stores the smallest missing
    // non-negative integers between
    // start index to current index
    let smNonNeg = 0;
    
    // Store the boolean value to check
    // smNonNeg present between start
    // index to each index of the array
    let hash = [];
      
    for(let i = 0; i < N; i++)
    {
        hash[i] = false;
    }
      
    // Traverse the array
    for(let i = 0; i < N; i++)
    {
          
        // Since output always lies
        // in the range[0, N - 1]
        if (arr[i] >= 0 && arr[i] < N)
        {
            hash[arr[i]] = true;
        }
    
        // Check if smNonNeg is
        // present between start index
        // and current index or not
        while (hash[smNonNeg])
        {
            smNonNeg++;
        }
    
        // Print smallest missing
        // non-negative integer
        document.write(smNonNeg + " ");
    }
}
 
// Driver Code
let arr = [ 0, 1, 2, 3, 5 ];
let N = arr.length;
   
smlstNonNeg(arr, N);
 
// This code is contributed by target_2   
 
</script>


Output: 

1 2 3 4 4

 

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments