Given two integers N and K, the task is to generate all positive integers with length N having an absolute difference of adjacent digits equal to K.
Examples:
Input: N = 4, K = 8
Output: 1919, 8080, 9191
Explanation:
The absolute difference between every consecutive digit of each number is 8.
For Example: 8080 (abs(8-0) = 8, abs(0-8) = 8)Input: N = 2, K = 2
Output: 13, 24, 20, 35, 31, 46, 42, 57, 53, 68, 64, 79, 75, 86, 97
Explanation:
The absolute difference between every consecutive digit of each number is 1.
Approach: The idea is to use Backtracking. Iterate over digits [1, 9] and for each digit from the N-digit number having a difference of absolute digit as K using recursion. Below are the steps:
1. Create a vector ans[] to store all the resulting numbers and recursively iterate from 1 to 9 to generate numbers starting from each digit. Below are the cases:
- Base Case: For all integers of a single length, that is, N = 1, add them to ans[].
- Recursive Call: If adding digit K to the numbers to one’s digit doesn’t exceed 9, then recursively call by decreasing the N and update num to (10*num + num%10 + K) as shown below:
if(num % 10 + K ? 9) {
recursive_function(10 * num + (num % 10 + K), K, N – 1, and);
}
- If the value of K is non-zero after all the recursive call and if num % 10 >= K, then again recursively call by decreasing the N and update num to (10*num + num%10 – K) as:
recursive_function(10 * num + num % 10 – K, K, N – 1, ans);
2. After all the above steps print the numbers stored in ans[].
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function that recursively finds the // possible numbers and append into ans void checkUntil( int num, int K, int N, vector< int >& ans) { // Base Case if (N == 1) { ans.push_back(num); return ; } // Check the sum of last digit and k // less than or equal to 9 or not if ((num % 10 + K) <= 9) checkUntil(10 * num + (num % 10 + K), K, N - 1, ans); // If k==0, then subtraction and // addition does not make any // difference // Hence, subtraction is skipped if (K) { if ((num % 10 - K) >= 0) checkUntil(10 * num + num % 10 - K, K, N - 1, ans); } } // Function to call checkUntil function // for every integer from 1 to 9 void check( int K, int N, vector< int >& ans) { // check_util function recursively // store all numbers starting from i for ( int i = 1; i <= 9; i++) { checkUntil(i, K, N, ans); } } // Function to print the all numbers // which satisfy the conditions void print(vector< int >& ans) { for ( int i = 0; i < ans.size(); i++) { cout << ans[i] << ", " ; } } // Driver Code int main() { // Given N and K int N = 4, K = 8; // To store the result vector< int > ans; // Function Call check(K, N, ans); // Print Resultant Numbers print(ans); return 0; } |
Java
// Java program for // the above approach import java.util.*; class GFG{ // Function that recursively finds the // possible numbers and append into ans static void checkUntil( int num, int K, int N, Vector<Integer> ans) { // Base Case if (N == 1 ) { ans.add(num); return ; } // Check the sum of last digit and k // less than or equal to 9 or not if ((num % 10 + K) <= 9 ) checkUntil( 10 * num + (num % 10 + K), K, N - 1 , ans); // If k==0, then subtraction and // addition does not make any // difference // Hence, subtraction is skipped if (K > 0 ) { if ((num % 10 - K) >= 0 ) checkUntil( 10 * num + num % 10 - K, K, N - 1 , ans); } } // Function to call checkUntil function // for every integer from 1 to 9 static void check( int K, int N, Vector<Integer> ans) { // check_util function recursively // store all numbers starting from i for ( int i = 1 ; i <= 9 ; i++) { checkUntil(i, K, N, ans); } } // Function to print the all numbers // which satisfy the conditions static void print(Vector<Integer> ans) { for ( int i = 0 ; i < ans.size(); i++) { System.out.print(ans.get(i) + ", " ); } } // Driver Code public static void main(String[] args) { // Given N and K int N = 4 , K = 8 ; // To store the result Vector<Integer> ans = new Vector<Integer>();; // Function Call check(K, N, ans); // Print Resultant Numbers print(ans); } } // This code is contributed by Amit Katiyar |
Python3
# Python3 program for the above approach # Function that recursively finds the # possible numbers and append into ans def checkUntil(num, K, N, ans): # Base Case if (N = = 1 ): ans.append(num) return # Check the sum of last digit and k # less than or equal to 9 or not if ((num % 10 + K) < = 9 ): checkUntil( 10 * num + (num % 10 + K), K, N - 1 , ans) # If k==0, then subtraction and # addition does not make any # difference # Hence, subtraction is skipped if (K): if ((num % 10 - K) > = 0 ): checkUntil( 10 * num + num % 10 - K, K, N - 1 , ans) # Function to call checkUntil function # for every integer from 1 to 9 def check(K, N, ans): # check_util function recursively # store all numbers starting from i for i in range ( 1 , 10 ): checkUntil(i, K, N, ans) # Function to print the all numbers # which satisfy the conditions def print_list(ans): for i in range ( len (ans)): print (ans[i], end = ", " ) # Driver Code if __name__ = = "__main__" : # Given N and K N = 4 K = 8 ; # To store the result ans = [] # Function call check(K, N, ans) # Print resultant numbers print_list(ans) # This code is contributed by chitranayal |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG{ // Function that recursively finds the // possible numbers and append into ans static void checkUntil( int num, int K, int N, List< int > ans) { // Base Case if (N == 1) { ans.Add(num); return ; } // Check the sum of last digit and k // less than or equal to 9 or not if ((num % 10 + K) <= 9) checkUntil(10 * num + (num % 10 + K), K, N - 1, ans); // If k==0, then subtraction and // addition does not make any // difference // Hence, subtraction is skipped if (K > 0) { if ((num % 10 - K) >= 0) checkUntil(10 * num + num % 10 - K, K, N - 1, ans); } } // Function to call checkUntil function // for every integer from 1 to 9 static void check( int K, int N, List< int > ans) { // check_util function recursively // store all numbers starting from i for ( int i = 1; i <= 9; i++) { checkUntil(i, K, N, ans); } } // Function to print the all numbers // which satisfy the conditions static void print(List< int > ans) { for ( int i = 0; i < ans.Count; i++) { Console.Write(ans[i] + ", " ); } } // Driver Code public static void Main(String[] args) { // Given N and K int N = 4, K = 8; // To store the result List< int > ans = new List< int >();; // Function call check(K, N, ans); // Print Resultant Numbers print(ans); } } // This code is contributed by Amit Katiyar |
Javascript
<script> // Javascript program to implement // the above approach // Function that recursively finds the // possible numbers and append into ans function checkUntil(num, K, N, ans) { // Base Case if (N == 1) { ans.push(num); return ; } // Check the sum of last digit and k // less than or equal to 9 or not if ((num % 10 + K) <= 9) checkUntil(10 * num + (num % 10 + K), K, N - 1, ans); // If k==0, then subtraction and // addition does not make any // difference // Hence, subtraction is skipped if (K > 0) { if ((num % 10 - K) >= 0) checkUntil(10 * num + num % 10 - K, K, N - 1, ans); } } // Function to call checkUntil function // for every integer from 1 to 9 function check(K, N, ans) { // check_util function recursively // store all numbers starting from i for (let i = 1; i <= 9; i++) { checkUntil(i, K, N, ans); } } // Function to print the all numbers // which satisfy the conditions function print( ans) { for (let i = 0; i < ans.length; i++) { document.write(ans[i] + ", " ); } } // Driver Code // Given N and K let N = 4, K = 8; // To store the result let ans = [] // Function Call check(K, N, ans); // Print Resultant Numbers print(ans); </script> |
1919, 8080, 9191,
Time Complexity: O(2N)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!