Friday, January 10, 2025
Google search engine
HomeData Modelling & AIFind maximum volume of a cuboid from the given perimeter and...

Find maximum volume of a cuboid from the given perimeter and area

Given a perimeter P and area A, the task is to calculate the maximum volume that can be made in form of cuboid from the given perimeter and surface area.

Examples : 

Input: P = 24, A = 24
Output: 8

Input: P = 20, A = 14
Output: 3

Approach: For a given perimeter of cuboid we have P = 4(l+b+h) —(i), 
for given area of cuboid we have A = 2 (lb+bh+lh) —(ii). 
Volume of cuboid is V = lbh
Volume is dependent on 3 variables l, b, h. Lets make it dependent on only length.

as V = lbh, 
=> V = l (A/2-(lb+lh)) {from equation (ii)} 
=> V = lA/2 – l2(b+h) 
=> V = lA/2 – l2(P/4-l) {from equation (i)} 
=> V = lA/2 – l2P/4 + l3 —-(iii)
Now differentiate V w.r.t l for finding maximum of volume. 
dV/dl = A/2 – lP/2 + 3l2 
After solving the quadratic in l we have l = (P – (P2-24A)1/2) / 12 
Substituting value of l in (iii), we can easily find the maximum volume.

Below is the implementation of the above approach:

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// function to return maximum volume
float maxVol(float P, float A)
{
    // calculate length
    float l = (P - sqrt(P * P - 24 * A)) / 12;
 
    // calculate volume
    float V = l * (A / 2.0 - l * (P / 4.0 - l));
 
    // return result
    return V;
}
 
// Driver code
int main()
{
    float P = 20, A = 16;
   
    // Function call
    cout << maxVol(P, A);
 
    return 0;
}


Java




// Java implementation of the above approach
import java.util.*;
 
class Geeks {
 
    // function to return maximum volume
    static float maxVol(float P, float A)
    {
        // calculate length
        float l
            = (float)(P - Math.sqrt(P * P - 24 * A)) / 12;
 
        // calculate volume
        float V
            = (float)(l * (A / 2.0 - l * (P / 4.0 - l)));
 
        // return result
        return V;
    }
 
    // Driver code
    public static void main(String args[])
    {
        float P = 20, A = 16;
       
        // Function call
        System.out.println(maxVol(P, A));
    }
}
 
// This code is contributed by Kirti_Mangal


Python3




# Python3 implementation of the
# above approach
from math import sqrt
 
# function to return maximum volume
 
 
def maxVol(P, A):
 
    # calculate length
    l = (P - sqrt(P * P - 24 * A)) / 12
 
    # calculate volume
    V = l * (A / 2.0 - l * (P / 4.0 - l))
 
    # return result
    return V
 
 
# Driver code
if __name__ == '__main__':
    P = 20
    A = 16
     
    # Function call
    print(maxVol(P, A))
 
# This code is contributed
# by Surendra_Gangwar


C#




// C# implementation of the above approach
using System;
 
class GFG {
 
    // function to return maximum volume
    static float maxVol(float P, float A)
    {
        // calculate length
        float l
            = (float)(P - Math.Sqrt(P * P - 24 * A)) / 12;
 
        // calculate volume
        float V
            = (float)(l * (A / 2.0 - l * (P / 4.0 - l)));
 
        // return result
        return V;
    }
 
    // Driver code
    public static void Main()
    {
        float P = 20, A = 16;
        
        // Function call
        Console.WriteLine(maxVol(P, A));
    }
}
 
// This code is contributed
// by Akanksha Rai


PHP




<?php
// PHP implementation of the above approach
 
// function to return maximum volume
function maxVol($P, $A)
{
    // calculate length
    $l = ($P - sqrt($P * $P - 24 * $A)) / 12;
 
    // calculate volume
    $V = $l * ($A / 2.0 - $l *
              ($P / 4.0 - $l));
 
    // return result
    return $V;
}
 
// Driver code
$P = 20;
$A = 16;
 
// Function call
echo maxVol($P, $A);
 
// This code is contributed by mits
?>


Javascript




<script>
// javascript implementation of the above approach
 
 
// function to return maximum volume
function maxVol( P,  A)
{
 
    // calculate length
    let l = (P - Math.sqrt(P * P - 24 * A)) / 12;
 
    // calculate volume
    let V = l * (A / 2.0 - l * (P / 4.0 - l));
 
    // return result
    return V;
}
 
// Driver code
    let P = 20, A = 16;
   
    // Function call
    document.write(maxVol(P, A).toFixed(5));
        
// This code is contributed by aashish1995
 
</script>


Output

4.14815

Time Complexity: O(logn)  as sqrt function is being used, time complexity of sqrt is logn

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments