Given a number N, the task is to find the number of ways N can be partitioned, i.e. the number of ways that N can be expressed as a sum of positive integers.
Note: N should also be considered itself a way to express it as a sum of positive integers.
Examples:
Input: N = 5
Output: 7
5 can be partitioned in the following ways:
5
4 + 1
3 + 2
3 + 1 + 1
2 + 2 + 1
2 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1
Input: N = 10
Output: 42
This post has been already discussed in Ways to write n as sum of two or more positive integers. In this post, an efficient approach is discussed.
Approach(Using Euler’s recurrence):
If p(n) is the number of partitions of N, then it can be generated by the following generating function:
Using this formula and Euler’s pentagonal number theorem, we can derive the following recurrence relation for p(n): (Check the Wikipedia article for more details)
where k = 1, -1, 2, -2, 3, -3, … and p(n) = 0 for n < 0.
Below is the implementation of above approach:
C++
// C++ implementation of above approach #include <bits/stdc++.h> using namespace std; // Function to find the number // of partitions of N long long partitions( int n) { vector< long long > p(n + 1, 0); // Base case p[0] = 1; for ( int i = 1; i <= n; ++i) { int k = 1; while ((k * (3 * k - 1)) / 2 <= i) { p[i] += (k % 2 ? 1 : -1) * p[i - (k * (3 * k - 1)) / 2]; if (k > 0) k *= -1; else k = 1 - k; } } return p[n]; } // Driver code int main() { int N = 20; cout << partitions(N); return 0; } |
Java
// Java implementation of above approach class GFG { // Function to find the number // of partitions of N static long partitions( int n) { long p[] = new long [n + 1 ]; // Base case p[ 0 ] = 1 ; for ( int i = 1 ; i <= n; ++i) { int k = 1 ; while ((k * ( 3 * k - 1 )) / 2 <= i) { p[i] += (k % 2 != 0 ? 1 : - 1 ) * p[i - (k * ( 3 * k - 1 )) / 2 ]; if (k > 0 ) { k *= - 1 ; } else { k = 1 - k; } } } return p[n]; } // Driver code public static void main(String[] args) { int N = 20 ; System.out.println(partitions(N)); } } // This code is contributed by Rajput-JI |
Python 3
# Python 3 implementation of # above approach # Function to find the number # of partitions of N def partitions(n): p = [ 0 ] * (n + 1 ) # Base case p[ 0 ] = 1 for i in range ( 1 , n + 1 ): k = 1 while ((k * ( 3 * k - 1 )) / 2 < = i) : p[i] + = (( 1 if k % 2 else - 1 ) * p[i - (k * ( 3 * k - 1 )) / / 2 ]) if (k > 0 ): k * = - 1 else : k = 1 - k return p[n] # Driver code if __name__ = = "__main__" : N = 20 print (partitions(N)) # This code is contributed # by ChitraNayal |
C#
// C# implementation of above approach using System; class GFG { // Function to find the number // of partitions of N static long partitions( int n) { long []p = new long [n + 1]; // Base case p[0] = 1; for ( int i = 1; i <= n; ++i) { int k = 1; while ((k * (3 * k - 1)) / 2 <= i) { p[i] += (k % 2 != 0 ? 1 : -1) * p[i - (k * (3 * k - 1)) / 2]; if (k > 0) { k *= -1; } else { k = 1 - k; } } } return p[n]; } // Driver code public static void Main(String[] args) { int N = 20; Console.WriteLine(partitions(N)); } } // This code has been contributed by 29AjayKumar |
PHP
<?php // PHP implementation of above approach // Function to find the number // of partitions of N function partitions( $n ) { $p = array_fill (0, $n + 1, 0); // Base case $p [0] = 1; for ( $i = 1; $i < $n + 1; $i ++) { $k = 1; while (( $k * (3 * $k - 1)) / 2 <= $i ) { $p [ $i ] += (( $k % 2 ? 1 : -1) * $p [ $i - ( $k * (3 * $k - 1)) / 2]); if ( $k > 0) $k *= -1; else $k = 1 - $k ; } } return $p [ $n ]; } // Driver Code $N = 20; print (partitions( $N )); // This code is contributed // by mits ?> |
Javascript
<script> // javascript implementation of above approach // Function to find the number // of partitions of N function partitions(n) { var p = Array(n + 1).fill(0); // Base case p[0] = 1; for (i = 1; i <= n; ++i) { var k = 1; while ((k * (3 * k - 1)) / 2 <= i) { p[i] += (k % 2 != 0 ? 1 : -1) * p[i - (k * (3 * k - 1)) / 2]; if (k > 0) { k *= -1; } else { k = 1 - k; } } } return p[n]; } // Driver code var N = 20; document.write(partitions(N)); // This code is contributed by todaysgaurav </script> |
627
Time Complexity: O(N?N)
Space Complexity: O(N), since N extra space has been taken.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!