Saturday, December 28, 2024
Google search engine
HomeData Modelling & AICheck whether a number can be represented as difference of two squares

Check whether a number can be represented as difference of two squares

Given a number N, the task is to check if this number can be represented as the difference of two perfect squares or not.

Examples: 

Input: N = 3 
Output: Yes 
Explanation: 
22 – 11 = 3

Input: N = 10 
Output: No 
 

Approach: The idea is that all the numbers can be represented as the difference of two squares except the numbers which yield the remainder of 2 when divided by 4. 

Let’s visualize this by taking a few examples: 

N = 4 => 22 - 02
N = 6 => Can't be expressed as 6 % 4 = 2
N = 8 => 32 - 12
N = 10 => Can't be expressed as 10 % 4 = 2
N = 11 => 62 - 52
N = 12 => 42 - 22
and so on...

Therefore, the idea is to simply check the remainder for 2 when the given number is divided by 4.

Below is the implementation of the above approach: 

C++




// C++ program to check whether a number
// can be represented by the difference
// of two squares
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check whether a number
// can be represented by the difference
// of two squares
bool difSquare(int n)
{
    // Checking if n % 4 = 2 or not
    if (n % 4 != 2) {
        return true;
    }
 
    return false;
}
 
// Driver code
int main()
{
 
    int n = 45;
    if (difSquare(n)) {
        cout << "Yes\n";
    }
    else {
        cout << "No\n";
    }
    return 0;
}


Java




// Java program to check whether a number
// can be represented by the difference
// of two squares
import java.util.*;
 
class GFG{
 
// Function to check whether a number
// can be represented by the difference
// of two squares
static boolean difSquare(int n)
{
     
    // Checking if n % 4 = 2 or not
    if (n % 4 != 2)
    {
        return true;
    }
    return false;
}
 
// Driver code
public static void main(String[] args)
{
    int n = 45;
     
    if (difSquare(n))
    {
        System.out.print("Yes\n");
    }
    else
    {
        System.out.print("No\n");
    }
}
}
 
// This code is contributed by shivanisinghss2110


Python3




# Python3 program to check whether a number
# can be represented by the difference
# of two squares
 
# Function to check whether a number
# can be represented by the difference
# of two squares
def difSquare(n):
     
    # Checking if n % 4 = 2 or not
    if (n % 4 != 2):
        return True
    return False
 
# Driver code
if __name__ == '__main__':
     
    n = 45
     
    if (difSquare(n)):
        print("Yes")
    else:
        print("No")
 
# This code is contributed by mohit kumar 29


C#




// C# program to check whether a number
// can be represented by the difference
// of two squares
using System;
class GFG{
 
// Function to check whether a number
// can be represented by the difference
// of two squares
static bool difSquare(int n)
{
     
    // Checking if n % 4 = 2 or not
    if (n % 4 != 2)
    {
        return true;
    }
    return false;
}
 
// Driver code
public static void Main()
{
    int n = 45;
     
    if (difSquare(n))
    {
        Console.Write("Yes\n");
    }
    else
    {
        Console.Write("No\n");
    }
}
}
 
// This code is contributed by Nidhi_biet


Javascript




<script>
 
// Javascript program to check whether a number
// can be represented by the difference
// of two squares
 
// Function to check whether a number
// can be represented by the difference
// of two squares
function difSquare(n)
{
     
    // Checking if n % 4 = 2 or not
    if (n % 4 != 2)
    {
        return true;
    }
    return false;
}
 
// Driver code
var n = 45;
 
if (difSquare(n))
{
    document.write("Yes\n");
}
else
{
    document.write("No\n");
}
 
// This code is contributed by Rajput-Ji
 
</script>


Output

Yes

Time complexity: O(1) because constant operations have been done
Auxiliary space: O(1)

Approach 2: Iterative Approach:
Here’s another approach to check whether a number can be represented by the difference of two squares:

  • Iterate through all possible values of x from 0 to sqrt(n).
  • For each value of x, compute y^2 = n + x^2.
  • Check if y is an integer. If it is, then n can be represented as the difference of two squares, which are x^2 and y^2 – n.
  • If no value of x satisfies the condition, then n cannot be represented as the difference of two squares.

Here’s the implementation of this approach:

C++




#include <bits/stdc++.h>
using namespace std;
 
bool difSquare(int n) {
    for (int x = 0; x <= sqrt(n); x++) {
        int y_squared = n + x * x;
        int y = sqrt(y_squared);
        if (y * y == y_squared) {
            return true;
        }
    }
    return false;
}
 
int main() {
    int n = 45;
    if (difSquare(n)) {
        cout << "Yes\n";
    } else {
        cout << "No\n";
    }
    return 0;
}


Java




import java.util.*;
 
class Main {
    static boolean difSquare(int n) {
        for (int x = 0; x <= Math.sqrt(n); x++) {
            int y_squared = n + x * x;
            int y = (int) Math.sqrt(y_squared);
            if (y * y == y_squared) {
                return true;
            }
        }
        return false;
    }
 
    public static void main(String[] args) {
        int n = 45;
        if (difSquare(n)) {
            System.out.println("Yes");
        } else {
            System.out.println("No");
        }
    }
}


Python3




import math
 
def difSquare(n):
    for x in range(int(math.sqrt(n))+1):
        y_squared = n + x * x
        y = int(math.sqrt(y_squared))
        if y * y == y_squared:
            return True
    return False
 
n = 45
if difSquare(n):
    print("Yes")
else:
    print("No")


C#




using System;
 
public class Program
{
  public static bool DifSquare(int n)
  {
    for (int x = 0; x <= Math.Sqrt(n); x++)
    {
      int ySquared = n + x * x;
      int y = (int)Math.Sqrt(ySquared);
      if (y * y == ySquared)
      {
        return true;
      }
    }
    return false;
  }
 
  public static void Main()
  {
    int n = 45;
    if (DifSquare(n))
    {
      Console.WriteLine("Yes");
    }
    else
    {
      Console.WriteLine("No");
    }
  }
}


Javascript




// Function to check if a number can be represented as
// the difference of two squares
function difSquare(n) {
  // Loop through all possible values of x from 0 up to the
  // square root of n
  for (let x = 0; x <= Math.sqrt(n); x++) {
    // Calculate y^2 as n + x^2
    const y_squared = n + x * x;
 
    // Calculate the square root of y_squared
    const y = Math.sqrt(y_squared);
 
    // Check if y^2 is equal to y_squared, if so, we found
    // the difference of two squares
    if (y * y === y_squared) {
      return true;
    }
  }
 
  // If no difference of squares is found, return false
  return false;
}
 
// Driver Code
 const n = 45;
 
  // Call the difSquare function and check the result
  if (difSquare(n)) {
    console.log("Yes");
  } else {
    console.log("No");
  }


Output: 

Yes

Time complexity: O(1) because constant operations have been done
Auxiliary space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments