Friday, January 3, 2025
Google search engine
HomeData Modelling & AIFind the sum of infinite series 1^2.x^0 + 2^2.x^1 + 3^2.x^2 +...

Find the sum of infinite series 1^2.x^0 + 2^2.x^1 + 3^2.x^2 + 4^2.x^3 +…….

Given an infinite series and a value x, the task is to find its sum. Below is the infinite series 
 

1^2*x^0 + 2^2*x^1 + 3^2*x^2 + 4^2*x^3 +……. upto infinity, where x belongs to (-1, 1)

Examples: 
 

Input: x = 0.5
Output: 12

Input: x = 0.9
Output: 1900

 

Approach:
Though the given series is not an Arithmetico-Geometric series, however, the differences (2^2-1^2), (3^2-2^2), ...   and so on, forms an AP. So, we can use the Method of Differences.
Let\: S = 1 + 4x + 9x^2 + 16x^3 + ...\infty \\\\ Multiply\: both\: sides\: with\: common\: ratio\: x\: of\: the\: GP(geometric progression).\\ S_x = x + 4x^2 + 9x^3 + ...\infty \\ \\ Now, \: subtract\: the\: two\: equations.\\ => (1-x)S = 1 + 3x + 5x^2 + 7x^3 + ...\infty \null\hfill (1)\\\\ Now, \: let\: R = 1 + 3x + 5x^2 + 7x^3 + ...\infty, \: which\: is\: an \:Arithmetico-Geometric\: series\: with \:a=1, \: d=2 \:and \:r=x.\\ For an A.G.P., $Sum \:R \:= \frac{a}{1-r} + \frac{rd}{(1-r)^2} \\ Substituting\: the \:values, \:we\: get\: R = \frac{1+x}{(1-x)^2} \\ Substitute\: R\: in\: (1), \:we\: get, (1-x)S=\frac{1+x}{(1-x)^2} \\ => S= \frac{1+x}{(1-x)^3}$
Hence, the sum will be (1+x)/(1-x)^3.
Below is the implementation of above approach: 
 

C++




// C++ implementation of above approach
#include <iostream>
#include <math.h>
 
using namespace std;
 
// Function to calculate sum
double solve_sum(double x)
{
    // Return sum
    return (1 + x) / pow(1 - x, 3);
}
 
// Driver code
int main()
{
    // declaration of value of x
    double x = 0.5;
 
    // Function call to calculate
    // the sum when x=0.5
    cout << solve_sum(x);
 
    return 0;
}


Java




// Java Program to find
//sum of the given infinite series
import java.util.*;
 
class solution
{
static double calculateSum(double x)
{
     
// Returning the final sum
return (1 + x) / Math.pow(1 - x, 3);
 
}
 
//Driver code
public static void main(String ar[])
{
     
  double x=0.5;
  System.out.println((int)calculateSum(x));
 
}
}
//This code is contributed by Surendra_Gangwar


Python




# Python implementation of above approach
 
# Function to calculate sum
def solve_sum(x):
    # Return sum
    return (1 + x)/pow(1-x, 3)
 
# driver code
 
# declaration of value of x
x = 0.5
 
# Function call to calculate the sum when x = 0.5
print(int(solve_sum(x)))


C#




// C# Program to find sum of
// the given infinite series
using System;
 
class GFG
{
static double calculateSum(double x)
{
     
// Returning the final sum
return (1 + x) / Math.Pow(1 - x, 3);
 
}
 
// Driver code
public static void Main()
{
    double x = 0.5;
    Console.WriteLine((int)calculateSum(x));
}
}
 
// This code is contributed
// by inder_verma..


PHP




<?php
// PHP implementation of
// above approach
 
// Function to calculate sum
function solve_sum($x)
{
    // Return sum
    return (1 + $x) /
            pow(1 - $x, 3);
}
 
// Driver code
 
// declaration of value of x
$x = 0.5;
 
// Function call to calculate
// the sum when x=0.5
echo solve_sum($x);
 
// This code is contributed
// by inder_verma
?>


Javascript




<script>
// javascript Program to find
//sum of the given infinite series
 
 
function calculateSum(x)
{
     
// Returning the final sum
return (1 + x) / Math.pow(1 - x, 3);
 
}
 
//Driver code
  
var x=0.5;
document.write(parseInt(calculateSum(x)));
 
// This code is contributed by 29AjayKumar
 
</script>


Output: 

12

 

Time Complexity: O(1)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments