Given a point(x, y, z) in 3-D and coefficients of the equation of a plane, the task is to find the mirror image of that point through the given plane.
Examples:
Input: a = 1, b = -2, c = 0, d = 0, x = -1, y = 3, z = 4
Output: x3 = 1.7999999999999998, y3 = -2.5999999999999996, z3 = 4.0
Input: a = 2, b = -1, c = 1, d = 3, x = 1, y = 3, z = 4
Output: x3 = -3.0, y3 = 5.0, z3 = 2.0
Approach: Equation of plane is as ax + by + cz + d = 0. Therefore, direction ratios of the normal to the plane are (a, b, c). Let N be the foot of perpendicular from a given point to the given plane so, line PN has directed ratios (a, b, c) and it passes through P(x1, y1, z1).
The equation of line PN will be as:-
(x - x1) / a = (y - y1) / b = (z - z1) / c = k
Hence any point on line PN can be written as:-
x = a*k + x1 y = b*k + y1 z = c*k + z1
since N lies in both line and plane so will satisfy(ax + by + cz + d = 0).
=>a * (a * k + x1) + b * (b * k + y1) + c * (c * k + z1) + d = 0. =>a * a * k + a * x1 + b * b * k + b * y1 + c * c * k + c * z1 + d = 0. =>(a * a + b * b + c * c)k = -a * x1 - b * y1 - c * z1 - d. =>k = (-a * x1 - b * y1 - c * z1 - d) / (a * a + b * b + c * c).
Now, the coordinates of Point N in terms of k will be:-
x2 = a * k + x1 y2 = b * k + y1 z2 = c * k + z1
Since, Point N(x2, y2, z2) is midpoint of point P(x1, y1, z1) and point Q(x3, y3, z3), coordinates of Point Q are:-
=> x3 = 2 * x2 - x1 => y3 = 2 * y2 - y1 => z3 = 2 * z2 - z1
C++
// C++ program to find // Mirror of a point // through a 3 D plane #include <bits/stdc++.h> #include<math.h> #include <iostream> #include <iomanip> using namespace std; // Function to mirror image void mirror_point( float a, float b, float c, float d, float x1, float y1, float z1) { float k = (-a * x1 - b * y1 - c * z1 - d) / ( float )(a * a + b * b + c * c); float x2 = a * k + x1; float y2 = b * k + y1; float z2 = c * k + z1; float x3 = 2 * x2 - x1; float y3 = 2 * y2 - y1; float z3 = 2 * z2 - z1; std::cout << std::fixed; std::cout << std::setprecision(1); cout << " x3 = " << x3; cout << " y3 = " << y3; cout << " z3 = " << z3; } // Driver Code int main() { float a = 1; float b = -2; float c = 0; float d = 0; float x1 = -1; float y1 = 3; float z1 = 4; // function call mirror_point(a, b, c, d, x1, y1, z1); return 0; } // This code is contributed // by Amber_Saxena. |
C
// C program to find // Mirror of a point // through a 3 D plane #include<stdio.h> // Function to mirror image void mirror_point( float a, float b, float c, float d, float x1, float y1, float z1) { float k = (-a * x1 - b * y1 - c * z1 - d) / ( float )(a * a + b * b + c * c); float x2 = a * k + x1; float y2 = b * k + y1; float z2 = c * k + z1; float x3 = 2 * x2 - x1; float y3 = 2 * y2 - y1; float z3 = 2 * z2 - z1; printf ( "x3 = %.1f " , x3); printf ( "y3 = %.1f " , y3); printf ( "z3 = %.1f " , z3); } // Driver Code int main() { float a = 1; float b = -2; float c = 0; float d = 0; float x1 = -1; float y1 = 3; float z1 = 4; // function call mirror_point(a, b, c, d, x1, y1, z1); } // This code is contributed // by Amber_Saxena. |
Java
// Java program to find // Mirror of a point // through a 3 D plane import java.io.*; class GFG { // Function to mirror image static void mirror_point( int a, int b, int c, int d, int x1, int y1, int z1) { float k = (-a * x1 - b * y1 - c * z1 - d) / ( float )(a * a + b * b + c * c); float x2 = a * k + x1; float y2 = b * k + y1; float z2 = c * k + z1; float x3 = 2 * x2 - x1; float y3 = 2 * y2 - y1; float z3 = 2 * z2 - z1; System.out.print( "x3 = " + x3 + " " ); System.out.print( "y3 = " + y3 + " " ); System.out.print( "z3 = " + z3 + " " ); } // Driver Code public static void main(String[] args) { int a = 1 ; int b = - 2 ; int c = 0 ; int d = 0 ; int x1 = - 1 ; int y1 = 3 ; int z1 = 4 ; // function call mirror_point(a, b, c, d, x1, y1, z1) ; } } // This code is contributed // by inder_verma |
Python
# Function to mirror image def mirror_point(a, b, c, d, x1, y1, z1): k = ( - a * x1 - b * y1 - c * z1 - d) / float ((a * a + b * b + c * c)) x2 = a * k + x1 y2 = b * k + y1 z2 = c * k + z1 x3 = 2 * x2 - x1 y3 = 2 * y2 - y1 z3 = 2 * z2 - z1 print "x3 =" , x3, print "y3 =" , y3, print "z3 =" , z3, # Driver Code a = 1 b = - 2 c = 0 d = 0 x1 = - 1 y1 = 3 z1 = 4 # function call mirror_point(a, b, c, d, x1, y1, z1) |
C#
// C# program to find Mirror of // a point through a 3 D plane using System; class GFG { // Function to mirror image static void mirror_point( int a, int b, int c, int d, int x1, int y1, int z1) { float k = (-a * x1 - b * y1 - c * z1 - d) / ( float )(a * a + b * b + c * c); float x2 = a * k + x1; float y2 = b * k + y1; float z2 = c * k + z1; float x3 = 2 * x2 - x1; float y3 = 2 * y2 - y1; float z3 = 2 * z2 - z1; Console.Write( "x3 = " + x3 + " " ); Console.Write( "y3 = " + y3 + " " ); Console.Write( "z3 = " + z3 + " " ); } // Driver Code static public void Main () { int a = 1; int b = -2; int c = 0; int d = 0; int x1 = -1; int y1 = 3; int z1 = 4; // function call mirror_point(a, b, c, d, x1, y1, z1); } } // This code is contributed by jit_t |
PHP
<?php // PHP program to find Mirror of // a point through a 3 D plane // Function to mirror image function mirror_point( $a , $b , $c , $d , $x1 , $y1 , $z1 ) { $k = (- $a * $x1 - $b * $y1 - $c * $z1 - $d ) / ( $a * $a + $b * $b + $c * $c ); $x2 = $a * $k + $x1 ; $y2 = $b * $k + $y1 ; $z2 = $c * $k + $z1 ; $x3 = 2 * $x2 - $x1 ; $y3 = 2 * $y2 - $y1 ; $z3 = 2 * $z2 - $z1 ; echo sprintf( "x3 = %.1f " , $x3 ); echo sprintf( "y3 = %.1f " , $y3 ); echo sprintf( "z3 = %.1f " , $z3 ); } // Driver Code $a = 1; $b = -2; $c = 0; $d = 0; $x1 = -1; $y1 = 3; $z1 = 4; // function call mirror_point( $a , $b , $c , $d , $x1 , $y1 , $z1 ); // This code is contributed // by Amber_Saxena. ?> |
Javascript
<script> // JavaScript program to find // Mirror of a point // through a 3 D plane // Function to mirror image function mirror_point(a, b, c, d, x1, y1, z1) { var k = parseFloat( (-a * x1 - b * y1 - c * z1 - d) / parseFloat(a * a + b * b + c * c) ); var x2 = parseFloat(a * k + x1); var y2 = parseFloat(b * k + y1); var z2 = parseFloat(c * k + z1); var x3 = parseFloat(2 * x2 - x1).toFixed(1); var y3 = parseFloat(2 * y2 - y1).toFixed(1); var z3 = parseFloat(2 * z2 - z1).toFixed(1); document.write( " x3 = " + x3); document.write( " y3 = " + y3); document.write( " z3 = " + z3); } // Driver Code var a = 1; var b = -2; var c = 0; var d = 0; var x1 = -1; var y1 = 3; var z1 = 4; // function call mirror_point(a, b, c, d, x1, y1, z1); </script> |
x3 = 1.8 y3 = -2.6 z3 = 4.0
Time Complexity: O(1)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!