Given an undirected graph consisting of N vertices numbered [0, N-1] and E edges, the task is to count the number of cycles such that any subset of vertices of a cycle does not form another cycle.
Examples:
Input: N = 2, E = 2, edges = [{0, 1}, {1, 0}]
Output: 1
Explanation:
Only one cycle exists between the two vertices.
Input: N = 6, E = 9, edges = [{0, 1}, {1, 2}, {0, 2}, {3, 0}, {3, 2}, {4, 1}, {4, 2}, {5, 1}, {5, 0}]
Output: 4
Explanation:
The possible cycles are shown in the diagram below:
Cycles such as 5 -> 0 -> 2 -> 1 -> 5 are not considered as it comprises of inner cycles {5 -> 0 -> 1} and {0 -> 1 -> 2}
Approach:
Since V vertices require V edges to form 1 cycle, the number of required cycles can be expressed using the formula:
(Edges - Vertices) + 1
Illustration:
N = 6, E = 9, edges = [{0, 1}, {1, 2}, {0, 2}, {3, 0}, {3, 2}, {4, 1}, {4, 2}, {5, 1}, {5, 0}]
Number of Cycles = 9 – 6 + 1 = 4
The 4 cycles in the graph are:
{5, 0, 1}, {0, 1, 2}, {3, 0, 2} and {1, 2, 4}
This formula also covers the case when a single vertex may have a self-loop.
Below is the implementation of the above approach:
C++
// C++ implementation for the // above approach. #include <bits/stdc++.h> using namespace std; // Function to return the // count of required cycles int numberOfCycles( int N, int E, int edges[][2]) { vector< int > graph[N]; for ( int i = 0; i < E; i++) { graph[edges[i][0]] .push_back(edges[i][1]); graph[edges[i][1]] .push_back(edges[i][0]); } // Return the number of cycles return (E - N) + 1; } // Driver Code int main() { int N = 6; int E = 9; int edges[][2] = { { 0, 1 }, { 1, 2 }, { 2, 0 }, { 5, 1 }, { 5, 0 }, { 3, 0 }, { 3, 2 }, { 4, 2 }, { 4, 1 } }; int k = numberOfCycles(N, E, edges); cout << k << endl; return 0; } |
Java
// Java implementation for the // above approach. import java.util.*; class GFG{ // Function to return the // count of required cycles static int numberOfCycles( int N, int E, int edges[][]) { @SuppressWarnings ( "unchecked" ) Vector<Integer> []graph = new Vector[N]; for ( int i = 0 ; i < N; i++) graph[i] = new Vector<Integer>(); for ( int i = 0 ; i < E; i++) { graph[edges[i][ 0 ]].add(edges[i][ 1 ]); graph[edges[i][ 1 ]].add(edges[i][ 0 ]); } // Return the number of cycles return (E - N) + 1 ; } // Driver Code public static void main(String[] args) { int N = 6 ; int E = 9 ; int edges[][] = { { 0 , 1 }, { 1 , 2 }, { 2 , 0 }, { 5 , 1 }, { 5 , 0 }, { 3 , 0 }, { 3 , 2 }, { 4 , 2 }, { 4 , 1 } }; int k = numberOfCycles(N, E, edges); System.out.print(k + "\n" ); } } // This code is contributed by Amit Katiyar |
Python3
# Python3 implementation for the # above approach. # Function to return the # count of required cycles def numberOfCycles(N, E, edges): graph = [[] for i in range (N)] for i in range (E): graph[edges[i][ 0 ]].append(edges[i][ 1 ]); graph[edges[i][ 1 ]].append(edges[i][ 0 ]); # Return the number of cycles return (E - N) + 1 ; # Driver Code if __name__ = = '__main__' : N = 6 ; E = 9 ; edges = [ [ 0 , 1 ], [ 1 , 2 ], [ 2 , 0 ], [ 5 , 1 ], [ 5 , 0 ], [ 3 , 0 ], [ 3 , 2 ], [ 4 , 2 ], [ 4 , 1 ] ]; k = numberOfCycles(N, E,edges); print (k) # This code is contributed by rutvik_56 |
C#
// C# implementation for the // above approach. using System; using System.Collections.Generic; class GFG{ // Function to return the // count of required cycles static int numberOfCycles( int N, int E, int [,]edges) { List< int > []graph = new List< int >[N]; for ( int i = 0; i < N; i++) graph[i] = new List< int >(); for ( int i = 0; i < E; i++) { graph[edges[i, 0]].Add(edges[i, 1]); graph[edges[i, 1]].Add(edges[i, 0]); } // Return the number of cycles return (E - N) + 1; } // Driver Code public static void Main(String[] args) { int N = 6; int E = 9; int [,]edges = { { 0, 1 }, { 1, 2 }, { 2, 0 }, { 5, 1 }, { 5, 0 }, { 3, 0 }, { 3, 2 }, { 4, 2 }, { 4, 1 } }; int k = numberOfCycles(N, E, edges); Console.Write(k + "\n" ); } } // This code is contributed by Rohit_ranjan |
Javascript
<script> // JavaScript implementation for the // above approach. // Function to return the // count of required cycles function numberOfCycles(N, E, edges) { var graph = Array.from(Array(N), ()=> Array()); for ( var i = 0; i < E; i++) { graph[edges[i][0]] .push(edges[i][1]); graph[edges[i][1]] .push(edges[i][0]); } // Return the number of cycles return (E - N) + 1; } // Driver Code var N = 6; var E = 9; var edges = [ [ 0, 1 ], [ 1, 2 ], [ 2, 0 ], [ 5, 1 ], [ 5, 0 ], [ 3, 0 ], [ 3, 2 ], [ 4, 2 ], [ 4, 1 ] ]; var k = numberOfCycles(N, E, edges); document.write( k); </script> |
4
Time Complexity: O(E)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!