Given an interval of integers [A, B]. For each number in this interval compute its greatest odd divisor. Output the sum of these divisors.
Examples:
Input : A = 1, B = 3 Output : 5 1 + 1 + 3 = 5 Input : A = 3, B = 9 Output : 29 3 + 1 + 5 + 3 + 7 + 1 + 9 = 29
Naive Approach :
A simple approach is to iterate through all numbers in the range find their greatest odd divisor but this algorithm has time complexity of O(n).
Efficient Approach :
We need to find the answer in range [ A, B ] if we can find answer in range [ 1, B ] and subtract it from [ 1, A -1 ] then we will get our required answer.
Here we can see that –
- The answer for an odd number X is X itself.
- The answer for an even number X is equal to the answer for X/2. This is true because X and X/2 have the same odd divisors.( if X = 4 then 4 and 2 both have 1 as greatest odd divisor).
If we want to find answer in range [1, N], then first we need to determine the sum of all the odd numbers
( 1, 3, 5, …) using a simple formula: the sum of the first K odd numbers is equal to K2. Then we need to add the answers for the even numbers (2, 4, 6, …). But these are actually equal to the answers for 1, 2, 3, …, floor(N/2), so we can call our function recursively for floor(N/2).
The complexity of this algorithm is O(log( N)).
Below is the implementation of the above idea :
C++
// C++ program to find sum of greatest // odd divisor of numbers in given range #include <bits/stdc++.h> using namespace std; // Function to return sum of // first n odd numbers int square( int n) { return n * n; } // Recursive function to return sum of greatest // odd divisor of numbers in range [1, n] int sum( int n) { if (n == 0) return 0; if (n % 2 == 1) { // Odd n return square((n + 1) / 2) + sum(n / 2); } else { // Even n return square(n / 2) + sum(n / 2); } } // Function to return sum of greatest // odd divisor of numbers in range [a, b] int oddDivSum( int a, int b) { return sum(b) - sum(a - 1); } // Driver code int main() { int a = 3, b = 9; cout << oddDivSum(a, b) << endl; return 0; } |
Java
// Java program to find sum of greatest // odd divisor of numbers in given range // Function to return sum of // first n odd numbers class gfg { static int square( int n) { return n * n; } // Recursive function to return sum of greatest // odd divisor of numbers in range [1, n] static int sum( int n) { if (n == 0 ) return 0 ; if (n % 2 == 1 ) { // Odd n return square((n + 1 ) / 2 ) + sum(n / 2 ); } else { // Even n return square(n / 2 ) + sum(n / 2 ); } } // Function to return sum of greatest // odd divisor of numbers in range [a, b] static int oddDivSum( int a, int b) { return sum(b) - sum(a - 1 ); } // Driver code public static void main(String[] args) { int a = 3 , b = 9 ; System.out.println(oddDivSum(a, b)); } } // This code is contributed by mits |
Python3
# Python3 program to find sum of greatest # odd divisor of numbers in given range # Function to return sum of first # n odd numbers def square(n): return n * n; # Recursive function to return sum # of greatest odd divisor of numbers # in range [1, n] def sum (n): if (n = = 0 ): return 0 ; if (n % 2 = = 1 ): # Odd n return (square( int ((n + 1 ) / 2 )) + sum ( int (n / 2 ))); else : # Even n return (square( int (n / 2 )) + sum ( int (n / 2 ))); # Function to return sum of greatest # odd divisor of numbers in range [a, b] def oddDivSum(a, b): return sum (b) - sum (a - 1 ); # Driver code a, b = 3 , 9 ; print (oddDivSum(a, b)); # This code is contributed by mits |
C#
// C# program to find sum of greatest // odd divisor of numbers in given range using System; // Function to return sum of // first n odd numbers class gfg { public int square( int n) { return n * n; } // Recursive function to return sum of greatest // odd divisor of numbers in range [1, n] public int sum( int n) { if (n == 0) return 0; if (n % 2 == 1) { // Odd n return square((n + 1) / 2) + sum(n / 2); } else { // Even n return square(n / 2) + sum(n / 2); } } // Function to return sum of greatest // odd divisor of numbers in range [a, b] public int oddDivSum( int a, int b) { return sum(b) - sum(a - 1); } } // Driver code class geek { public static int Main() { gfg g = new gfg(); int a = 3, b = 9; Console.WriteLine(g.oddDivSum(a, b)); return 0; } } |
PHP
<?php // PHP program to find sum of greatest // odd divisor of numbers in given range // Function to return sum of // first n odd numbers function square( $n ) { return $n * $n ; } // Recursive function to return sum // of greatest odd divisor of numbers // in range [1, n] function sum( $n ) { if ( $n == 0) return 0; if ( $n % 2 == 1) { // Odd n return square((int)(( $n + 1) / 2)) + sum((int)( $n / 2)); } else { // Even n return square((int)( $n / 2)) + sum((int)( $n / 2)); } } // Function to return sum of greatest // odd divisor of numbers in range [a, b] function oddDivSum( $a , $b ) { return sum( $b ) - sum( $a - 1); } // Driver code $a = 3; $b = 9; echo oddDivSum( $a , $b ); // This code is contributed by mits ?> |
Javascript
<script> // Javascript program to find sum of greatest // odd divisor of numbers in given range // Function to return sum of // first n odd numbers function square(n) { return n * n; } // Recursive function to return sum of greatest // odd divisor of numbers in range [1, n] function sum(n) { if (n == 0) return 0; if (n % 2 == 1) { // Odd n return square((n + 1) / 2) + sum(n / 2); } else { // Even n return square(n / 2) + sum(n / 2); } } // Function to return sum of greatest // odd divisor of numbers in range [a, b] function oddDivSum(a, b) { return sum(b) - sum(a - 1); } // Driver code var a = 3, b = 9; document.write(parseInt(oddDivSum(a, b))); // This code is contributed by bgangwar59 </script> |
29
Time Complexity : O(log(N))
Auxiliary Space: O(log(N))
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!