Sunday, November 17, 2024
Google search engine
HomeData Modelling & AITotal number of odd length palindrome sub-sequence around each center

Total number of odd length palindrome sub-sequence around each center

Given a string str, the task is to find the number of odd length palindromic sub-sequences around of str with str[i] as center i.e. every index will be considered as the center one by one.

Examples: 

Input: str = “xyzx” 
Output: 1 2 2 1 
For index 0: There is only a single sub-sequence possible i.e. “x” 
For index 1: Two sub-sequences are possible i.e. “y” and “xyx” 
For index 2: “z” and “xzx” 
For index 3: “x”

Input: str = “aaaa” 
Output: 1 3 3 1 

Approach: We will use dynamic programming to solve this problem. Let’s denote length of the string str be N. Now, Let dp[i][j] denote the number of palindromic sub-sequences from 0 to i – 1 and number of palindromic sub-sequences from j to N – 1
Let len be the distance between i and j. For each length len, we will fix our i and j, and check whether characters str[i] and str[j] are equal or not. Then according to it, we will make our dp transitions. 

If str[i] != str[j] then dp[i][j] = dp[i – 1][j] + dp[i][j + 1] – dp[i – 1][j + 1] 
If str[i] == str[j] then dp[i][j] = dp[i – 1][j] + dp[i][j + 1]
Base case: 
If i == 0 and j == n – 1 then dp[i][j] = 2 if str[i] == str[j] else dp[i][j] = 1
 

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the total palindromic
// odd length sub-sequences
void solve(string& s)
{
    int n = s.length();
 
    // dp array to store the number of palindromic
    // subsequences for 0 to i-1 and j+1 to n-1
    int dp[n][n];
    memset(dp, 0, sizeof dp);
 
    // We will start with the largest
    // distance between i and j
    for (int len = n - 1; len >= 0; --len) {
 
        // For each len, we fix our i
        for (int i = 0; i + len < n; ++i) {
 
            // For this i we will find our j
            int j = i + len;
 
            // Base cases
            if (i == 0 and j == n - 1) {
                if (s[i] == s[j])
                    dp[i][j] = 2;
                else if (s[i] != s[j])
                    dp[i][j] = 1;
            }
            else {
                if (s[i] == s[j]) {
 
                    // If the characters are equal
                    // then look for out of bound index
                    if (i - 1 >= 0) {
                        dp[i][j] += dp[i - 1][j];
                    }
                    if (j + 1 <= n - 1) {
                        dp[i][j] += dp[i][j + 1];
                    }
                    if (i - 1 < 0 or j + 1 >= n) {
 
                        // We have only 1 way that is to
                        // just pick these characters
                        dp[i][j] += 1;
                    }
                }
                else if (s[i] != s[j]) {
 
                    // If the characters are not equal
                    if (i - 1 >= 0) {
                        dp[i][j] += dp[i - 1][j];
                    }
                    if (j + 1 <= n - 1) {
                        dp[i][j] += dp[i][j + 1];
                    }
                    if (i - 1 >= 0 and j + 1 <= n - 1) {
 
                        // Subtract it as we have
                        // counted it twice
                        dp[i][j] -= dp[i - 1][j + 1];
                    }
                }
            }
        }
    }
    vector<int> ways;
    for (int i = 0; i < n; ++i) {
        if (i == 0 or i == n - 1) {
 
            // We have just 1 palindrome
            // sequence of length 1
            ways.push_back(1);
        }
        else {
 
            // Else total ways would be sum of dp[i-1][i+1],
            // that is number of palindrome sub-sequences
            // from 1 to i-1 + number of palindrome
            // sub-sequences from i+1 to n-1
            int total = dp[i - 1][i + 1];
            ways.push_back(total);
        }
    }
    for (int i = 0; i < ways.size(); ++i) {
        cout << ways[i] << " ";
    }
}
 
// Driver code
int main()
{
    string s = "xyxyx";
    solve(s);
 
    return 0;
}


Java




// Java implementation of above approach
import java.util.*;
 
class GFG
{
 
// Function to find the total palindromic
// odd length sub-sequences
static void solve(char[] s)
{
    int n = s.length;
 
    // dp array to store the number of palindromic
    // subsequences for 0 to i-1 and j+1 to n-1
    int [][]dp = new int[n][n];
 
    // We will start with the largest
    // distance between i and j
    for (int len = n - 1; len >= 0; --len)
    {
 
        // For each len, we fix our i
        for (int i = 0; i + len < n; ++i)
        {
 
            // For this i we will find our j
            int j = i + len;
 
            // Base cases
            if (i == 0 && j == n - 1)
            {
                if (s[i] == s[j])
                    dp[i][j] = 2;
                else if (s[i] != s[j])
                    dp[i][j] = 1;
            }
            else
            {
                if (s[i] == s[j])
                {
 
                    // If the characters are equal
                    // then look for out of bound index
                    if (i - 1 >= 0)
                    {
                        dp[i][j] += dp[i - 1][j];
                    }
                    if (j + 1 <= n - 1)
                    {
                        dp[i][j] += dp[i][j + 1];
                    }
                    if (i - 1 < 0 || j + 1 >= n)
                    {
 
                        // We have only 1 way that is to
                        // just pick these characters
                        dp[i][j] += 1;
                    }
                }
                else if (s[i] != s[j])
                {
 
                    // If the characters are not equal
                    if (i - 1 >= 0)
                    {
                        dp[i][j] += dp[i - 1][j];
                    }
                    if (j + 1 <= n - 1)
                    {
                        dp[i][j] += dp[i][j + 1];
                    }
                    if (i - 1 >= 0 && j + 1 <= n - 1)
                    {
 
                        // Subtract it as we have
                        // counted it twice
                        dp[i][j] -= dp[i - 1][j + 1];
                    }
                }
            }
        }
    }
     
    Vector<Integer> ways = new Vector<>();
    for (int i = 0; i < n; ++i)
    {
        if (i == 0 || i == n - 1)
        {
 
            // We have just 1 palindrome
            // sequence of length 1
            ways.add(1);
        }
        else
        {
 
            // Else total ways would be sum of dp[i-1][i+1],
            // that is number of palindrome sub-sequences
            // from 1 to i-1 + number of palindrome
            // sub-sequences from i+1 to n-1
            int total = dp[i - 1][i + 1];
            ways.add(total);
        }
    }
    for (int i = 0; i < ways.size(); ++i)
    {
        System.out.print(ways.get(i) + " ");
    }
}
 
// Driver code
public static void main(String[] args)
{
    char[] s = "xyxyx".toCharArray();
    solve(s);
}
}
 
// This code has been contributed by 29AjayKumar


Python3




# Function to find the total palindromic
# odd Length sub-sequences
def solve(s):
    n = len(s)
 
    # dp array to store the number of palindromic
    # subsequences for 0 to i-1 and j+1 to n-1
    dp=[[0 for i in range(n)] for i in range(n)]
 
    # We will start with the largest
    # distance between i and j
    for Len in range(n-1,-1,-1):
 
        # For each Len, we fix our i
        for i in range(n):
 
            if i + Len >= n:
                break
 
            # For this i we will find our j
            j = i + Len
 
            # Base cases
            if (i == 0 and j == n - 1):
                if (s[i] == s[j]):
                    dp[i][j] = 2
                elif (s[i] != s[j]):
                    dp[i][j] = 1
            else:
                if (s[i] == s[j]):
                    # If the characters are equal
                    # then look for out of bound index
                    if (i - 1 >= 0):
                        dp[i][j] += dp[i - 1][j]
 
                    if (j + 1 <= n - 1):
                        dp[i][j] += dp[i][j + 1]
 
                    if (i - 1 < 0 or j + 1 >= n):
 
                        # We have only 1 way that is to
                        # just pick these characters
                        dp[i][j] += 1
 
                elif (s[i] != s[j]):
 
                    # If the characters are not equal
                    if (i - 1 >= 0):
                        dp[i][j] += dp[i - 1][j]
 
                    if (j + 1 <= n - 1):
                        dp[i][j] += dp[i][j + 1]
 
                    if (i - 1 >= 0 and j + 1 <= n - 1):
 
                        # Subtract it as we have
                        # counted it twice
                        dp[i][j] -= dp[i - 1][j + 1]
 
    ways = []
    for i in range(n):
        if (i == 0 or i == n - 1):
 
            # We have just 1 palindrome
            # sequence of Length 1
            ways.append(1)
        else:
 
            # Else total ways would be sum of dp[i-1][i+1],
            # that is number of palindrome sub-sequences
            # from 1 to i-1 + number of palindrome
            # sub-sequences from i+1 to n-1
            total = dp[i - 1][i + 1]
            ways.append(total)
 
    for i in ways:
        print(i,end=" ")
 
# Driver code
 
s = "xyxyx"
solve(s)
 
# This code is contributed by mohit kumar 29


C#




// C# implementation of above approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
    // Function to find the total palindromic
    // odd length sub-sequences
    static void solve(char[] s)
    {
        int n = s.Length;
     
        // dp array to store the number of palindromic
        // subsequences for 0 to i-1 and j+1 to n-1
        int [,]dp = new int[n, n];
     
        // We will start with the largest
        // distance between i and j
        for (int len = n - 1; len >= 0; --len)
        {
     
            // For each len, we fix our i
            for (int i = 0; i + len < n; ++i)
            {
     
                // For this i we will find our j
                int j = i + len;
     
                // Base cases
                if (i == 0 && j == n - 1)
                {
                    if (s[i] == s[j])
                        dp[i, j] = 2;
                    else if (s[i] != s[j])
                        dp[i, j] = 1;
                }
                else
                {
                    if (s[i] == s[j])
                    {
     
                        // If the characters are equal
                        // then look for out of bound index
                        if (i - 1 >= 0)
                        {
                            dp[i, j] += dp[i - 1, j];
                        }
                        if (j + 1 <= n - 1)
                        {
                            dp[i, j] += dp[i, j + 1];
                        }
                        if (i - 1 < 0 || j + 1 >= n)
                        {
     
                            // We have only 1 way that is to
                            // just pick these characters
                            dp[i, j] += 1;
                        }
                    }
                    else if (s[i] != s[j])
                    {
     
                        // If the characters are not equal
                        if (i - 1 >= 0)
                        {
                            dp[i, j] += dp[i - 1, j];
                        }
                        if (j + 1 <= n - 1)
                        {
                            dp[i, j] += dp[i, j + 1];
                        }
                        if (i - 1 >= 0 && j + 1 <= n - 1)
                        {
     
                            // Subtract it as we have
                            // counted it twice
                            dp[i, j] -= dp[i - 1, j + 1];
                        }
                    }
                }
            }
        }
         
        List<int> ways = new List<int>();
 
        for (int i = 0; i < n; ++i)
        {
            if (i == 0 || i == n - 1)
            {
     
                // We have just 1 palindrome
                // sequence of length 1
                ways.Add(1);
            }
            else
            {
     
                // Else total ways would be sum of dp[i-1][i+1],
                // that is number of palindrome sub-sequences
                // from 1 to i-1 + number of palindrome
                // sub-sequences from i+1 to n-1
                int total = dp[i - 1,i + 1];
                ways.Add(total);
            }
        }
        for (int i = 0; i < ways.Capacity; ++i)
        {
            Console.Write(ways[i] + " ");
        }
    }
     
    // Driver code
    public static void Main()
    {
        char[] s = "xyxyx".ToCharArray();
        solve(s);
    }
}
 
// This code is contributed by AnkitRai01


Javascript




<script>
// Javascript implementation of above approach
 
// Function to find the total palindromic
// odd length sub-sequences
function solve(s)
{
    n = s.length;
  
    // dp array to store the number of palindromic
    // subsequences for 0 to i-1 and j+1 to n-1
    let dp = new Array(n);
    for(let i=0;i<n;i++)
    {
        dp[i]=new Array(n);
        for(let j=0;j<n;j++)
            dp[i][j]=0;
    }
  
    // We will start with the largest
    // distance between i and j
    for (let len = n - 1; len >= 0; --len)
    {
  
        // For each len, we fix our i
        for (let i = 0; i + len < n; ++i)
        {
  
            // For this i we will find our j
            let j = i + len;
  
            // Base cases
            if (i == 0 && j == n - 1)
            {
                if (s[i] == s[j])
                    dp[i][j] = 2;
                else if (s[i] != s[j])
                    dp[i][j] = 1;
            }
            else
            {
                if (s[i] == s[j])
                {
  
                    // If the characters are equal
                    // then look for out of bound index
                    if (i - 1 >= 0)
                    {
                        dp[i][j] += dp[i - 1][j];
                    }
                    if (j + 1 <= n - 1)
                    {
                        dp[i][j] += dp[i][j + 1];
                    }
                    if (i - 1 < 0 || j + 1 >= n)
                    {
  
                        // We have only 1 way that is to
                        // just pick these characters
                        dp[i][j] += 1;
                    }
                }
                else if (s[i] != s[j])
                {
  
                    // If the characters are not equal
                    if (i - 1 >= 0)
                    {
                        dp[i][j] += dp[i - 1][j];
                    }
                    if (j + 1 <= n - 1)
                    {
                        dp[i][j] += dp[i][j + 1];
                    }
                    if (i - 1 >= 0 && j + 1 <= n - 1)
                    {
  
                        // Subtract it as we have
                        // counted it twice
                        dp[i][j] -= dp[i - 1][j + 1];
                    }
                }
            }
        }
    }
      
    let ways = [];
    for (let i = 0; i < n; ++i)
    {
        if (i == 0 || i == n - 1)
        {
  
            // We have just 1 palindrome
            // sequence of length 1
            ways.push(1);
        }
        else
        {
  
            // Else total ways would be sum of dp[i-1][i+1],
            // that is number of palindrome sub-sequences
            // from 1 to i-1 + number of palindrome
            // sub-sequences from i+1 to n-1
            let total = dp[i - 1][i + 1];
            ways.push(total);
        }
    }
    for (let i = 0; i < ways.length; ++i)
    {
        document.write(ways[i] + " ");
    }
}
 
// Driver code
let s = "xyxyx".split("");
solve(s);
 
// This code is contributed by rag2127
</script>


Output: 

1 3 4 3 1

 

Time Complexity: O(n2)
Auxiliary Space: O(n2), where n is the length of the given string.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments