Thursday, January 9, 2025
Google search engine
HomeData Modelling & AICheck whether nodes of Binary Tree form Arithmetic, Geometric or Harmonic Progression

Check whether nodes of Binary Tree form Arithmetic, Geometric or Harmonic Progression

Given a binary tree, the task is to check whether the nodes in this tree form an arithmetic progression, geometric progression or harmonic progression.
Examples: 
 

Input:               
                      4
                    /   \
                   2     16
                  / \    / \
                 1   8  64  32
Output: Geometric Progression
Explanation:
The nodes of the binary tree can be used
to form a Geometric Progression as follows - 
{1, 2, 4, 8, 16, 32, 64}

Input:          
                 15
               /   \
              5     10
             / \      \
            25   35   20
Output: Arithmetic Progression
Explanation:
The nodes of the binary tree can be used
to form a Arithmetic Progression as follows - 
{5, 10, 15, 20, 25, 35}

 

Approach: The idea is to traverse the Binary Tree using Level-order Traversal and store all the nodes in an array and then check that the array can be used to form an arithmetic, geometric or harmonic progression
 

  • To check a sequence is in arithmetic progression or not, sort the sequence and check that the common difference between consecutive elements of the array is the same.
  • To check a sequence is in geometric progression or not, sort the sequence and check that the common ratio between the consecutive elements of the array is the same.
  • To check a sequence is in harmonic progression or not, find the reciprocal of every element and then sort the array and check that the common difference between the consecutive elements is the same.

Below is the implementation of the above approach: 
 

C++




// C++ implementation to check that
// nodes of binary tree form AP/GP/HP
 
#include <bits/stdc++.h>
using namespace std;
 
// Structure of the
// node of the binary tree
struct Node {
    int data;
    struct Node *left, *right;
};
 
// Function to find the size
// of the Binary Tree
int size(Node* node)
{
    // Base Case
    if (node == NULL)
        return 0;
    else
        return (size(node->left) + 1 + size(node->right));
}
 
// Function to check if the permutation
// of the sequence form Arithmetic Progression
bool checkIsAP(double arr[], int n)
{
    // If the sequence contains
    // only one element
    if (n == 1)
        return true;
 
    // Sorting the array
    sort(arr, arr + n);
 
    double d = arr[1] - arr[0];
 
    // Loop to check if the sequence
    // have same common difference
    // between its consecutive elements
    for (int i = 2; i < n; i++)
        if (arr[i] - arr[i - 1] != d)
            return false;
 
    return true;
}
 
// Function to check if the permutation
// of the sequence form
// Geometric progression
bool checkIsGP(double arr[], int n)
{
    // Condition when the length
    // of the sequence is 1
    if (n == 1)
        return true;
 
    // Sorting the array
    sort(arr, arr + n);
    double r = arr[1] / arr[0];
 
    // Loop to check if the
    // sequence have same common
    // ratio in consecutive elements
    for (int i = 2; i < n; i++) {
        if (arr[i] / arr[i - 1] != r)
            return false;
    }
    return true;
}
 
// Function to check if the permutation
// of the sequence form
// Harmonic Progression
bool checkIsHP(double arr[], int n)
{
    // Condition when length of
    // sequence in 1
    if (n == 1) {
        return true;
    }
    double rec[n];
 
    // Loop to find the reciprocal
    // of the sequence
    for (int i = 0; i < n; i++) {
        rec[i] = ((1 / arr[i]));
    }
 
    // Sorting the array
    sort(rec, rec + n);
    double d = (rec[1]) - (rec[0]);
 
    // Loop to check if the common
    // difference of the sequence is same
    for (int i = 2; i < n; i++) {
        if (rec[i] - rec[i - 1] != d) {
            return false;
        }
    }
    return true;
}
 
// Function to check if the nodes
// of the Binary tree forms AP/GP/HP
void checktype(Node* root)
{
 
    int n = size(root);
    double arr[n];
    int i = 0;
 
    // Base Case
    if (root == NULL)
        return;
 
    // Create an empty queue
    // for level order traversal
    queue<Node*> q;
 
    // Enqueue Root and initialize height
    q.push(root);
 
    // Loop to traverse the tree using
    // Level order Traversal
    while (q.empty() == false) {
        Node* node = q.front();
        arr[i] = node->data;
        i++;
        q.pop();
 
        // Enqueue left child
        if (node->left != NULL)
            q.push(node->left);
 
        // Enqueue right child
        if (node->right != NULL)
            q.push(node->right);
    }
 
    int flag = 0;
 
    // Condition to check if the
    // sequence form Arithmetic Progression
    if (checkIsAP(arr, n)) {
        cout << "Arithmetic Progression"
             << endl;
        flag = 1;
    }
 
    // Condition to check if the
    // sequence form Geometric Progression
    else if (checkIsGP(arr, n)) {
        cout << "Geometric Progression"
             << endl;
        flag = 1;
    }
 
    // Condition to check if the
    // sequence form Geometric Progression
    else if (checkIsHP(arr, n)) {
        cout << "Geometric Progression"
             << endl;
        flag = 1;
    }
    else if (flag == 0) {
        cout << "No";
    }
}
 
// Function to create new node
struct Node* newNode(int data)
{
    struct Node* node = new Node;
    node->data = data;
    node->left = node->right = NULL;
    return (node);
}
 
// Driver Code
int main()
{
    /* Constructed Binary tree is:
             1
            / \
           2   3
          / \   \
         4   5   8
                / \
                6  7
    */
    struct Node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
    root->right->right = newNode(8);
    root->right->right->left = newNode(6);
    root->right->right->right = newNode(7);
 
    checktype(root);
 
    return 0;
}


Java




// Java implementation to check that
// nodes of binary tree form AP/GP/HP
import java.util.*;
 
class GFG {
    // Structure of the
    // node of the binary tree
    static class Node {
        int data;
        Node left, right;
 
        Node(int data) {
            this.data = data;
            this.left = this.right = null;
        }
    };
 
    // Function to find the size
    // of the Binary Tree
    static int size(Node node) {
        // Base Case
        if (node == null)
            return 0;
        else
            return (size(node.left) + 1 + size(node.right));
    }
 
    // Function to check if the permutation
    // of the sequence form Arithmetic Progression
    static boolean checkIsAP(double[] arr, int n) {
        // If the sequence contains
        // only one element
        if (n == 1)
            return true;
 
        // Sorting the array
        Arrays.sort(arr);
 
        double d = arr[1] - arr[0];
 
        // Loop to check if the sequence
        // have same common difference
        // between its consecutive elements
        for (int i = 2; i < n; i++)
            if (arr[i] - arr[i - 1] != d)
                return false;
 
        return true;
    }
 
    // Function to check if the permutation
    // of the sequence form
    // Geometric progression
    static boolean checkIsGP(double[] arr, int n) {
        // Condition when the length
        // of the sequence is 1
        if (n == 1)
            return true;
 
        // Sorting the array
        Arrays.sort(arr);
        double r = arr[1] / arr[0];
 
        // Loop to check if the
        // sequence have same common
        // ratio in consecutive elements
        for (int i = 2; i < n; i++) {
            if (arr[i] / arr[i - 1] != r)
                return false;
        }
        return true;
    }
 
    // Function to check if the permutation
    // of the sequence form
    // Harmonic Progression
    static boolean checkIsHP(double[] arr, int n) {
        // Condition when length of
        // sequence in 1
        if (n == 1) {
            return true;
        }
        double[] rec = new double[n];
 
        // Loop to find the reciprocal
        // of the sequence
        for (int i = 0; i < n; i++) {
            rec[i] = ((1 / arr[i]));
        }
 
        // Sorting the array
        Arrays.sort(rec);
        double d = (rec[1]) - (rec[0]);
 
        // Loop to check if the common
        // difference of the sequence is same
        for (int i = 2; i < n; i++) {
            if (rec[i] - rec[i - 1] != d) {
                return false;
            }
        }
        return true;
    }
 
    // Function to check if the nodes
    // of the Binary tree forms AP/GP/HP
    static void checktype(Node root) {
 
        int n = size(root);
        double[] arr = new double[n];
        int i = 0;
 
        // Base Case
        if (root == null)
            return;
 
        // Create an empty queue
        // for level order traversal
        Queue<Node> q = new LinkedList<>();
 
        // Enqueue Root and initialize height
        q.add(root);
 
        // Loop to traverse the tree using
        // Level order Traversal
        while (q.isEmpty() == false) {
            Node node = q.poll();
            arr[i] = node.data;
            i++;
 
            // Enqueue left child
            if (node.left != null)
                q.add(node.left);
 
            // Enqueue right child
            if (node.right != null)
                q.add(node.right);
        }
 
        int flag = 0;
 
        // Condition to check if the
        // sequence form Arithmetic Progression
        if (checkIsAP(arr, n)) {
            System.out.println("Arithmetic Progression");
            flag = 1;
        }
 
        // Condition to check if the
        // sequence form Geometric Progression
        else if (checkIsGP(arr, n)) {
            System.out.println("Geometric Progression");
            flag = 1;
        }
 
        // Condition to check if the
        // sequence form Geometric Progression
        else if (checkIsHP(arr, n)) {
            System.out.println("Geometric Progression");
            flag = 1;
        } else if (flag == 0) {
            System.out.println("No");
        }
    }
 
    // Driver Code
    public static void main(String[] args) {
 
        /* Constructed Binary tree is:
                 1
                / \
               2   3
              / \   \
             4   5   8
                    / \
                   6   7
        */
        Node root = new Node(1);
        root.left = new Node(2);
        root.right = new Node(3);
        root.left.left = new Node(4);
        root.left.right = new Node(5);
        root.right.right = new Node(8);
        root.right.right.left = new Node(6);
        root.right.right.right = new Node(7);
 
        checktype(root);
    }
}
 
// This code is contributed by
// sanjeev2552


Python3




# Python implementation to check that
# nodes of binary tree form AP/GP/HP
 
# class of the
# node of the binary tree
class Node:
    def __init__(self, key):
        self.left = None
        self.right = None
        self.data = key
 
# Function to find the size
# of the Binary Tree
def size(node):
    # Base Case
    if node == None:
        return 0
    else:
        return (size(node.left) + 1 + size(node.right))
 
# Function to check if the permutation
# of the sequence form Arithmetic Progression
def checkIsAP(arr, n):
   
    # If the sequence contains
    # only one element
    if n == 1:
        return 1
 
    # Sorting the array
    arr.sort()
    d = arr[1] - arr[0]
 
    # Loop to check if the sequence
    # have same common difference
    # between its consecutive elements
    for i in range(2, n):
        if (arr[i] - arr[i - 1] != d):
            return 0
 
    return 1
 
# Function to check if the permutation
# of the sequence form
# Geometric progression
def checkIsGP(arr, n):
   
    # Condition when the length
    # of the sequence is 1
    if (n == 1):
        return 1
 
    # Sorting the array
    arr.sort()
    r = arr[1] / arr[0]
 
    # Loop to check if the
    # sequence have same common
    # ratio in consecutive elements
    for i in range(2, n):
        if (arr[i] / arr[i - 1] != r):
            return 0
    return 1
 
# Function to check if the permutation
# of the sequence form
# Harmonic Progression
def checkIsHP(arr, n):
   
    # Condition when length of
    # sequence in 1
    if (n == 1):
        return 1
 
    rec = [None] * n
 
    # Loop to find the reciprocal
    # of the sequence
    for i in range(0, n):
        rec[i] = ((1 / arr[i]))
 
    # Sorting the array
    rec.sort()
    d = (rec[1]) - (rec[0])
 
    # Loop to check if the common
    # difference of the sequence is same
    for i in range(2, n):
        if (rec[i] - rec[i - 1] != d):
            return 0
 
    return 1
 
# Function to check if the nodes
# of the Binary tree forms AP/GP/HP
def checktype(root):
 
    n = size(root)
    arr = [Node] * n
    i = 0
    # Base Case
    if (root == None):
        return
 
    # Create an empty queue
    # for level order traversal
    q = []
 
    # Enqueue Root and initialize height
    q.append(root)
 
    # Loop to traverse the tree using
    # Level order Traversal
    while (len(q) > 0):
        node = q[0]
        arr[i] = node.data
        i = i + 1
        q.pop(0)
 
        # Enqueue left child
        if (node.left != None):
            q.append(node.left)
 
        # Enqueue right child
        if (node.right != None):
            q.append(node.right)
    flag = 0
    # Condition to check if the
    # sequence form Arithmetic Progression
    if (checkIsAP(arr, n)):
        print("Arithmetic Progression\n")
        flag = 1
 
    # Condition to check if the
    # sequence form Geometric Progression
    elif (checkIsGP(arr, n)):
        print("Geometric Progression\n")
        flag = 1
 
    # Condition to check if the
    # sequence form Geometric Progression
    elif (checkIsHP(arr, n)):
        print("Harmonicc Progression\n")
        flag = 1
    elif (flag == 0):
        print("No")
 
 
# Driver Code
    # Constructed Binary tree is:
    #         1
    #        / \
    #       2   3
    #      / \   \
    #     4   5   8
    #            / \
    #           6  7
 
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
root.right.right = Node(8)
root.right.right.left = Node(6)
root.right.right.right = Node(7)
 
checktype(root)
 
# This code is contributed by rj13to.


C#




// C# implementation to check that
// nodes of binary tree form AP/GP/HP
using System;
using System.Collections.Generic;
 
public class GFG {
    // Structure of the
    // node of the binary tree
    public class Node {
        public int data;
        public Node left, right;
  
        public Node(int data) {
            this.data = data;
            this.left = this.right = null;
        }
    };
  
    // Function to find the size
    // of the Binary Tree
    static int size(Node node) {
        // Base Case
        if (node == null)
            return 0;
        else
            return (size(node.left) + 1 + size(node.right));
    }
  
    // Function to check if the permutation
    // of the sequence form Arithmetic Progression
    static bool checkIsAP(double[] arr, int n) {
        // If the sequence contains
        // only one element
        if (n == 1)
            return true;
  
        // Sorting the array
        Array.Sort(arr);
  
        double d = arr[1] - arr[0];
  
        // Loop to check if the sequence
        // have same common difference
        // between its consecutive elements
        for (int i = 2; i < n; i++)
            if (arr[i] - arr[i - 1] != d)
                return false;
  
        return true;
    }
  
    // Function to check if the permutation
    // of the sequence form
    // Geometric progression
    static bool checkIsGP(double[] arr, int n) {
        // Condition when the length
        // of the sequence is 1
        if (n == 1)
            return true;
  
        // Sorting the array
        Array.Sort(arr);
        double r = arr[1] / arr[0];
  
        // Loop to check if the
        // sequence have same common
        // ratio in consecutive elements
        for (int i = 2; i < n; i++) {
            if (arr[i] / arr[i - 1] != r)
                return false;
        }
        return true;
    }
  
    // Function to check if the permutation
    // of the sequence form
    // Harmonic Progression
    static bool checkIsHP(double[] arr, int n) {
        // Condition when length of
        // sequence in 1
        if (n == 1) {
            return true;
        }
        double[] rec = new double[n];
  
        // Loop to find the reciprocal
        // of the sequence
        for (int i = 0; i < n; i++) {
            rec[i] = ((1 / arr[i]));
        }
  
        // Sorting the array
        Array.Sort(rec);
        double d = (rec[1]) - (rec[0]);
  
        // Loop to check if the common
        // difference of the sequence is same
        for (int i = 2; i < n; i++) {
            if (rec[i] - rec[i - 1] != d) {
                return false;
            }
        }
        return true;
    }
  
    // Function to check if the nodes
    // of the Binary tree forms AP/GP/HP
    static void checktype(Node root) {
  
        int n = size(root);
        double[] arr = new double[n];
        int i = 0;
  
        // Base Case
        if (root == null)
            return;
  
        // Create an empty queue
        // for level order traversal
        Queue<Node> q = new Queue<Node>();
  
        // Enqueue Root and initialize height
        q.Enqueue(root);
  
        // Loop to traverse the tree using
        // Level order Traversal
        while (q.Count!=0 == false) {
            Node node = q.Dequeue();
            arr[i] = node.data;
            i++;
  
            // Enqueue left child
            if (node.left != null)
                q.Enqueue(node.left);
  
            // Enqueue right child
            if (node.right != null)
                q.Enqueue(node.right);
        }
  
        int flag = 0;
  
        // Condition to check if the
        // sequence form Arithmetic Progression
        if (checkIsAP(arr, n)) {
            Console.WriteLine("Arithmetic Progression");
            flag = 1;
        }
  
        // Condition to check if the
        // sequence form Geometric Progression
        else if (checkIsGP(arr, n)) {
            Console.WriteLine("Geometric Progression");
            flag = 1;
        }
  
        // Condition to check if the
        // sequence form Geometric Progression
        else if (checkIsHP(arr, n)) {
            Console.WriteLine("Geometric Progression");
            flag = 1;
        } else if (flag == 0) {
            Console.WriteLine("No");
        }
    }
  
    // Driver Code
    public static void Main(String[] args) {
  
        /* Constructed Binary tree is:
                 1
                / \
               2   3
              / \   \
             4   5   8
                    / \
                   6   7
        */
        Node root = new Node(1);
        root.left = new Node(2);
        root.right = new Node(3);
        root.left.left = new Node(4);
        root.left.right = new Node(5);
        root.right.right = new Node(8);
        root.right.right.left = new Node(6);
        root.right.right.right = new Node(7);
  
        checktype(root);
    }
}
// This code contributed by sapnasingh4991


Javascript




<script>
 
    // JavaScript implementation to check that
    // nodes of binary tree form AP/GP/HP
     
    // Structure of the
    // node of the binary tree
    class Node {
        constructor(data) {
           this.left = null;
           this.right = null;
           this.data = data;
        }
    }
  
    // Function to find the size
    // of the Binary Tree
    function size(node) {
        // Base Case
        if (node == null)
            return 0;
        else
            return (size(node.left) + 1 + size(node.right));
    }
  
    // Function to check if the permutation
    // of the sequence form Arithmetic Progression
    function checkIsAP(arr, n) {
        // If the sequence contains
        // only one element
        if (n == 1)
            return true;
  
        // Sorting the array
        arr.sort();
  
        let d = arr[1] - arr[0];
  
        // Loop to check if the sequence
        // have same common difference
        // between its consecutive elements
        for (let i = 2; i < n; i++)
            if (arr[i] - arr[i - 1] != d)
                return false;
  
        return true;
    }
  
    // Function to check if the permutation
    // of the sequence form
    // Geometric progression
    function checkIsGP(arr, n) {
        // Condition when the length
        // of the sequence is 1
        if (n == 1)
            return true;
  
        // Sorting the array
        arr.sort();
        let r = arr[1] / arr[0];
  
        // Loop to check if the
        // sequence have same common
        // ratio in consecutive elements
        for (let i = 2; i < n; i++) {
            if (arr[i] / arr[i - 1] != r)
                return false;
        }
        return true;
    }
  
    // Function to check if the permutation
    // of the sequence form
    // Harmonic Progression
    function checkIsHP(arr, n) {
        // Condition when length of
        // sequence in 1
        if (n == 1) {
            return true;
        }
        let rec = new Array(n);
  
        // Loop to find the reciprocal
        // of the sequence
        for (let i = 0; i < n; i++) {
            rec[i] = ((1 / arr[i]));
        }
  
        // Sorting the array
        rec.sort();
        let d = (rec[1]) - (rec[0]);
  
        // Loop to check if the common
        // difference of the sequence is same
        for (let i = 2; i < n; i++) {
            if (rec[i] - rec[i - 1] != d) {
                return false;
            }
        }
        return true;
    }
  
    // Function to check if the nodes
    // of the Binary tree forms AP/GP/HP
    function checktype(root) {
  
        let n = size(root);
        let arr = new Array(n);
        let i = 0;
  
        // Base Case
        if (root == null)
            return;
  
        // Create an empty queue
        // for level order traversal
        let q = [];
  
        // Enqueue Root and initialize height
        q.push(root);
  
        // Loop to traverse the tree using
        // Level order Traversal
        while (q.length > 0) {
            let node = q[0];
            q.shift();
            arr[i] = node.data;
            i++;
  
            // Enqueue left child
            if (node.left != null)
                q.push(node.left);
  
            // Enqueue right child
            if (node.right != null)
                q.push(node.right);
        }
  
        let flag = 0;
  
        // Condition to check if the
        // sequence form Arithmetic Progression
        if (checkIsAP(arr, n)) {
            document.write("Arithmetic Progression");
            flag = 1;
        }
  
        // Condition to check if the
        // sequence form Geometric Progression
        else if (checkIsGP(arr, n)) {
            document.write("Geometric Progression");
            flag = 1;
        }
  
        // Condition to check if the
        // sequence form Geometric Progression
        else if (checkIsHP(arr, n)) {
            document.write("Geometric Progression");
            flag = 1;
        } else if (flag == 0) {
            document.write("No");
        }
    }
     
    /* Constructed Binary tree is:
                   1
                  / \
                 2   3
                / \   \
               4   5   8
                      / \
                     6   7
          */
    let root = new Node(1);
    root.left = new Node(2);
    root.right = new Node(3);
    root.left.left = new Node(4);
    root.left.right = new Node(5);
    root.right.right = new Node(8);
    root.right.right.left = new Node(6);
    root.right.right.right = new Node(7);
 
    checktype(root);
 
</script>


Output: 

Arithmetic Progression

 

Performance Analysis: 
 

  • Time Complexity: As in the above approach, there is a traversal of the nodes and sorting them which takes O(N*logN) time in worst case. Hence the Time Complexity will be O(N*logN).
  • Auxiliary Space Complexity: As in the above approach, There is extra space used to store the data of the nodes. Hence the auxiliary space complexity will be O(N).

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments