Write a function to count the number of nodes in a given singly linked list.
For example, the function should return 5 for linked list 1->3->1->2->1.
Iterative Solution:
1) Initialize count as 0 2) Initialize a node pointer, current = head. 3) Do following while current is not NULL a) current = current -> next b) count++; 4) Return count
Following is the Iterative implementation of the above algorithm to find the count of nodes in a given singly linked list.
Python
# A complete working Python program to # find the length of a Linked List # iteratively # Node class class Node: # Function to initialize the node object def __init__( self , data): # Assign data self .data = data # Initialize next as null self . next = None # Linked List class contains a Node object class LinkedList: # Function to initialize head def __init__( self ): self .head = None # This function is in LinkedList class. # It inserts a new node at the beginning # of Linked List. def push( self , new_data): # 1 & 2: Allocate the Node & # Put in the data new_node = Node(new_data) # 3. Make next of new Node as head new_node. next = self .head # 4. Move the head to point to the new Node self .head = new_node # This function counts number of nodes in # Linked List iteratively, given 'node' # as starting node. def getCount( self ): # Initialise temp temp = self .head count = 0 # Initialise count # Loop while end of linked list is # not reached while (temp): count + = 1 temp = temp. next return count # Code execution starts here if __name__ = = '__main__' : llist = LinkedList() llist.push( 1 ) llist.push( 3 ) llist.push( 1 ) llist.push( 2 ) llist.push( 1 ) print ( "Count of nodes is :" , llist.getCount()) |
('Count of nodes is :', 5)
Time Complexity: O(n), where n represents the length of the given linked list.
Auxiliary Space: O(1), no extra space is required, so it is a constant.
Recursive Solution:
int getCount(head) 1) If head is NULL, return 0. 2) Else return 1 + getCount(head->next)
Following is the Recursive implementation of the above algorithm to find the count of nodes in a given singly linked list.
Python
# A complete working Python program to # find the length of a Linked List # recursively # Node class class Node: # Function to initialize the node object def __init__( self , data): # Assign data self .data = data # Initialize next as null self . next = None # Linked List class contains a Node object class LinkedList: # Function to initialize head def __init__( self ): self .head = None # This function is in LinkedList class. # It inserts a new node at the beginning # of Linked List. def push( self , new_data): # 1 & 2: Allocate the Node & # Put in the data new_node = Node(new_data) # 3. Make next of new Node as head new_node. next = self .head # 4. Move the head to point to the new Node self .head = new_node # This function counts number of nodes in # Linked List recursively, given 'node' # as starting node. def getCountRec( self , node): # Base case if ( not node): return 0 else : return 1 + self .getCountRec(node. next ) # A wrapper over getCountRec() def getCount( self ): return self .getCountRec( self .head) # Code execution starts here if __name__ = = '__main__' : llist = LinkedList() llist.push( 1 ) llist.push( 3 ) llist.push( 1 ) llist.push( 2 ) llist.push( 1 ) print ( "Count of nodes is :" , llist.getCount()) |
('Count of nodes is :', 5)
Time Complexity: O(n), where n represents the length of the given linked list.
Auxiliary Space: O(n), for recursive stack where n represents the length of the given linked list.
Approach: Linear Traversal Method
- Define a Node class with two attributes: data to store the value of the node, and next to store a reference to the next node in the list.
- Define a LinkedList class with a single attribute: head to store a reference to the first node in the list.
- Define an append method in the LinkedList class to add a new node to the end of the list.
- Define a length method in the LinkedList class to find the length of the list.
- Initialize a count variable to 0 and a current_node variable to the head of the list.
- Enter a while loop that continues until current_node is None.
- Increment the count variable by 1 on each iteration of the loop.
- Update current_node to be the next node in the list on each iteration of the loop.
- Return the value of the count variable as the length of the list.
Python3
class Node: def __init__( self , data): self .data = data self . next = None class LinkedList: def __init__( self ): self .head = None def append( self , data): new_node = Node(data) if self .head is None : self .head = new_node return current_node = self .head while current_node. next : current_node = current_node. next current_node. next = new_node def length( self ): count = 0 current_node = self .head while current_node: count + = 1 current_node = current_node. next return count linked_list = LinkedList() linked_list.append( 1 ) linked_list.append( 2 ) linked_list.append( 3 ) linked_list.append( 4 ) linked_list.append( 5 ) print (linked_list.length()) # Output: 5 |
5
The time complexity of the approach used in the program is O(n),
The auxiliary space used by the program is O(1).
Approach Name: Hash Table Method
Steps:
- Define a linked list class with a head pointer that points to the first node of the linked list.
- Create an empty hash table to store visited nodes.
- Traverse the linked list using the head pointer.
- For each node, check if it is already present in the hash table. If it is, stop traversing.
- If the node is not in the hash table, add it to the hash table and move to the next node.
- Return the size of the hash table as the length of the linked list.
Python3
# Python program for the above approach # Linked List Node Class class Node: def __init__( self , data = None ): self .data = data self . next = None # Linked List Class class LinkedList: def __init__( self ): self .head = None # Function to insert into Linked List def insert( self , data): new_node = Node(data) if self .head is None : self .head = new_node else : current_node = self .head while current_node. next : current_node = current_node. next current_node. next = new_node # Function to find the length of # the Linked List def length( self ): visited_nodes = {} current_node = self .head while current_node: if current_node in visited_nodes: break visited_nodes[current_node] = True current_node = current_node. next return len (visited_nodes) # Driver Code linked_list = LinkedList() linked_list.insert( 1 ) linked_list.insert( 2 ) linked_list.insert( 3 ) # Function Call print (linked_list.length()) |
3
Time Complexity: O(n), where n is the length of the linked list, due to the traversal of the linked list.
Auxiliary Space: O(n), due to the hash table used to store visited nodes.
Please refer complete article on Find Length of a Linked List (Iterative and Recursive) for more details!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!