Wednesday, November 20, 2024
Google search engine
HomeData Modelling & AISymmetric Binary Tree

Symmetric Binary Tree

Given a binary tree, check whether it is a mirror of itself.

Examples:

Input:
      5
    /   \
   3     3
  / \   / \
 8   9 9   8
 
Output: Symmetric

Input:
     5
   /   \
  8     7
   \     \
   4      3
Output: Not Symmetric   
 

Approach: The idea is to traverse the tree using Morris Traversal and Reverse Morris Traversal to traverse the given binary tree and at each step check that the data of the current node is equal in both the traversals. If at any step the data of the nodes are different. Then, the given tree is not Symmetric Binary Tree.

Below is the implementation of the above approach:

C++




// C++ implementation to check
// if Tree is symmetric or not
 
#include <bits/stdc++.h>
using namespace std;
 
// A Binary Tree Node
struct Node {
    int data;
    Node* left;
    Node* right;
 
    Node(int val)
    {
        data = val;
        left = right = NULL;
    }
};
 
// Function to check if the given
// binary tree is Symmetric or not
bool isSymmetric(struct Node* root)
{
    Node *curr1 = root, *curr2 = root;
 
    // Loop to traverse the tree in
    // Morris Traversal and
    // Reverse Morris Traversal
    while (curr1 != NULL
           && curr2 != NULL) {
 
        if (curr1->left == NULL
            && curr2->right == NULL) {
 
            if (curr1->data != curr2->data)
                return false;
 
            curr1 = curr1->right;
            curr2 = curr2->left;
        }
 
        else if (curr1->left != NULL
                 && curr2->right != NULL) {
 
            Node* pre1 = curr1->left;
            Node* pre2 = curr2->right;
 
            while (pre1->right != NULL
                   && pre1->right != curr1
                   && pre2->left != NULL
                   && pre2->left != curr2) {
                pre1 = pre1->right;
                pre2 = pre2->left;
            }
 
            if (pre1->right == NULL
                && pre2->left == NULL) {
 
                // Here, we are threading the Node
                pre1->right = curr1;
                pre2->left = curr2;
                curr1 = curr1->left;
                curr2 = curr2->right;
            }
 
            else if (pre1->right == curr1
                     && pre2->left == curr2) {
 
                // Unthreading the nodes
                pre1->right = NULL;
                pre2->left = NULL;
 
                if (curr1->data != curr2->data)
                    return false;
                curr1 = curr1->right;
                curr2 = curr2->left;
            }
            else
                return false;
        }
        else
            return false;
    }
 
    if (curr1 != curr2)
        return false;
 
    return true;
}
 
// Driver Code
int main()
{
    /*
         5
       /   \
      3     3
     / \   / \
    8   9 9   8    */
 
    // Creation of Binary tree
    Node* root = new Node(5);
    root->left = new Node(3);
    root->right = new Node(3);
    root->left->left = new Node(8);
    root->left->right = new Node(9);
    root->right->left = new Node(9);
    root->right->right = new Node(8);
 
    if (isSymmetric(root))
        cout << "Symmetric";
    else
        cout << "Not Symmetric";
    return 0;
}


Java




// Java implementation to check
// if Tree is symmetric or not
class GFG{
 
// A Binary Tree Node
static class Node
{
    int data;
    Node left;
    Node right;
 
    Node(int val)
    {
        data = val;
        left = right = null;
    }
};
 
// Function to check if the given
// binary tree is Symmetric or not
static boolean isSymmetric(Node root)
{
    Node curr1 = root, curr2 = root;
 
    // Loop to traverse the tree in
    // Morris Traversal and
    // Reverse Morris Traversal
    while (curr1 != null &&
           curr2 != null)
    {
 
        if (curr1.left == null &&
            curr2.right == null)
        {
 
            if (curr1.data != curr2.data)
                return false;
 
            curr1 = curr1.right;
            curr2 = curr2.left;
        }
 
        else if (curr1.left != null &&
                 curr2.right != null)
        {
            Node pre1 = curr1.left;
            Node pre2 = curr2.right;
 
            while (pre1.right != null &&
                   pre1.right != curr1 &&
                   pre2.left != null &&
                   pre2.left != curr2)
            {
                pre1 = pre1.right;
                pre2 = pre2.left;
            }
 
            if (pre1.right == null &&
                pre2.left == null)
            {
 
                // Here, we are threading the Node
                pre1.right = curr1;
                pre2.left = curr2;
                curr1 = curr1.left;
                curr2 = curr2.right;
            }
 
            else if (pre1.right == curr1 &&
                     pre2.left == curr2)
            {
 
                // Unthreading the nodes
                pre1.right = null;
                pre2.left = null;
 
                if (curr1.data != curr2.data)
                    return false;
                curr1 = curr1.right;
                curr2 = curr2.left;
            }
            else
                return false;
        }
        else
            return false;
    }
 
    if (curr1 != curr2)
        return false;
 
    return true;
}
 
// Driver Code
public static void main(String[] args)
{
    /*
         5
       /   \
      3     3
     / \   / \
    8   9 9   8    */
 
    // Creation of Binary tree
    Node root = new Node(5);
    root.left = new Node(3);
    root.right = new Node(3);
    root.left.left = new Node(8);
    root.left.right = new Node(9);
    root.right.left = new Node(9);
    root.right.right = new Node(8);
 
    if (isSymmetric(root))
        System.out.print("Symmetric");
    else
        System.out.print("Not Symmetric");
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 implementation to check
# if Tree is symmetric or not
 
# A Binary Tree Node
class Node:
    def __init__(self, val):
         
        self.data = val
        self.left = self.right = None
         
# Function to check if the given
# binary tree is Symmetric or not
def isSymmetric(root):
    curr1 = root
    curr2 = root
     
    # Loop to traverse the tree in
    # Morris Traversal and
    # Reverse Morris Traversal
    while curr1 != None and curr2 != None:
         
        if (curr1.left == None and
            curr2.right == None):
             
            if curr1.data != curr2.data:
                return False
                 
            curr1 = curr1.right
            curr2 = curr2.left
             
        elif curr1 != None and curr2 != None:
            pre1 = curr1.left
            pre2 = curr2.right
             
            while (pre1.right != None and
                   pre1.right != curr1 and
                   pre2.left != None and
                   pre2.left != curr2):
                pre1 = pre1.right
                pre2 = pre2.left
                 
            if pre1.right == None and pre2.left == None:
                 
                # Here, we are threading the Node
                pre1.right = curr1
                pre2.left = curr2
                curr1 = curr1.left
                curr2 = curr2.right
                 
            elif (pre1.right == curr1 and
                  pre2.left == curr2):
                 
                # Unthreading the nodes
                pre1.right = None
                pre2.left = None
                 
                if curr1.data != curr2.data:
                    return False
                 
                curr1 = curr1.right
                curr2 = curr2.left
            else:
                return False
             
        else:
            return False
         
    if curr1 != curr2:
        return False
     
    return True
 
# Driver code
def main():
     
    #
    #      5
    #     / \
    #  3     3
    # / \   / \
    #8   9 9   8
 
    # Creation of Binary tree
    root = Node(5)
    root.left = Node(3)
    root.right = Node(3)
    root.left.left = Node(8)
    root.left.right = Node(9)
    root.right.left = Node(9)
    root.right.right = Node(8)
     
    if isSymmetric(root):
        print("Symmetric")
    else:
        print("Not Symmetric")
main()
 
# This code is contributed by Stuti Pathak


C#




// C# implementation to check
// if Tree is symmetric or not
using System;
 
class GFG{
 
// A Binary Tree Node
class Node
{
    public int data;
    public Node left;
    public Node right;
 
    public Node(int val)
    {
        data = val;
        left = right = null;
    }
};
 
// Function to check if the given
// binary tree is Symmetric or not
static bool isSymmetric(Node root)
{
    Node curr1 = root, curr2 = root;
 
    // Loop to traverse the tree in
    // Morris Traversal and
    // Reverse Morris Traversal
    while (curr1 != null &&
           curr2 != null)
    {
        if (curr1.left == null &&
           curr2.right == null)
        {
            if (curr1.data != curr2.data)
                return false;
 
            curr1 = curr1.right;
            curr2 = curr2.left;
        }
 
        else if (curr1.left != null &&
                curr2.right != null)
        {
            Node pre1 = curr1.left;
            Node pre2 = curr2.right;
 
            while (pre1.right != null &&
                   pre1.right != curr1 &&
                    pre2.left != null &&
                    pre2.left != curr2)
            {
                pre1 = pre1.right;
                pre2 = pre2.left;
            }
 
            if (pre1.right == null &&
                 pre2.left == null)
            {
                 
                // Here, we are threading the Node
                pre1.right = curr1;
                pre2.left = curr2;
                curr1 = curr1.left;
                curr2 = curr2.right;
            }
 
            else if (pre1.right == curr1 &&
                      pre2.left == curr2)
            {
 
                // Unthreading the nodes
                pre1.right = null;
                pre2.left = null;
 
                if (curr1.data != curr2.data)
                    return false;
                     
                curr1 = curr1.right;
                curr2 = curr2.left;
            }
            else
                return false;
        }
        else
            return false;
    }
 
    if (curr1 != curr2)
        return false;
 
    return true;
}
 
// Driver Code
public static void Main(String[] args)
{
    /*
         5
       /   \
      3        3
     / \   / \
    8   9 9   8 */
 
    // Creation of Binary tree
    Node root = new Node(5);
    root.left = new Node(3);
    root.right = new Node(3);
    root.left.left = new Node(8);
    root.left.right = new Node(9);
    root.right.left = new Node(9);
    root.right.right = new Node(8);
 
    if (isSymmetric(root))
        Console.Write("Symmetric");
    else
        Console.Write("Not Symmetric");
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
    // JavaScript implementation to check
    // if Tree is symmetric or not
     
    // A Binary Tree Node
    class Node
    {
        constructor(val) {
           this.left = null;
           this.right = null;
           this.data = val;
        }
    }
 
    // Function to check if the given
    // binary tree is Symmetric or not
    function isSymmetric(root)
    {
        let curr1 = root, curr2 = root;
 
        // Loop to traverse the tree in
        // Morris Traversal and
        // Reverse Morris Traversal
        while (curr1 != null &&
               curr2 != null)
        {
            if (curr1.left == null &&
               curr2.right == null)
            {
                if (curr1.data != curr2.data)
                    return false;
 
                curr1 = curr1.right;
                curr2 = curr2.left;
            }
 
            else if (curr1.left != null &&
                    curr2.right != null)
            {
                let pre1 = curr1.left;
                let pre2 = curr2.right;
 
                while (pre1.right != null &&
                       pre1.right != curr1 &&
                        pre2.left != null &&
                        pre2.left != curr2)
                {
                    pre1 = pre1.right;
                    pre2 = pre2.left;
                }
 
                if (pre1.right == null &&
                     pre2.left == null)
                {
 
                    // Here, we are threading the Node
                    pre1.right = curr1;
                    pre2.left = curr2;
                    curr1 = curr1.left;
                    curr2 = curr2.right;
                }
 
                else if (pre1.right == curr1 &&
                          pre2.left == curr2)
                {
 
                    // Unthreading the nodes
                    pre1.right = null;
                    pre2.left = null;
 
                    if (curr1.data != curr2.data)
                        return false;
 
                    curr1 = curr1.right;
                    curr2 = curr2.left;
                }
                else
                    return false;
            }
            else
                return false;
        }
 
        if (curr1 != curr2)
            return false;
 
        return true;
    }
     
    /*
         5
       /   \
      3        3
     / \   / \
    8   9 9   8 */
   
  // Creation of Binary tree
  let root = new Node(5);
  root.left = new Node(3);
  root.right = new Node(3);
  root.left.left = new Node(8);
  root.left.right = new Node(9);
  root.right.left = new Node(9);
  root.right.right = new Node(8);
 
  if (isSymmetric(root))
    document.write("Symmetric");
  else
    document.write("Not Symmetric");
     
</script>


Output: 

Symmetric

Time Complexity: Since every edge of the tree is traversed at most two times exactly as in the case of Morris traversal and in the worst case, the same number of extra edges (as input tree) are created and removed. Therefore, the time complexity of this approach is O(N).

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments