Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICount subarrays with all elements greater than K

Count subarrays with all elements greater than K

Given an array of N integers and a number K, the task is to find the number of subarrays such that all elements are greater than K in it. 

Examples: 

Input: a[] = {3, 4, 5, 6, 7, 2, 10, 11}, K = 5 
Output: 6 
The possible subarrays are {6}, {7}, {6, 7}, {10}, {11} and {10, 11}.

Input: a[] = {8, 25, 10, 19, 19, 18, 20, 11, 18}, K = 13 
Output: 12  

Approach: The idea is to start traversing the array using a counter. If the current element is greater than the given value X, increment the counter otherwise add counter*(counter+1)/2 to the number of subarrays and reinitialize counter to 0. 

Below is the implementation of the above approach: 

C++




// C++ program to print the number of subarrays such
// that all elements are greater than K
#include <bits/stdc++.h>
using namespace std;
 
// Function to count number of subarrays
int countSubarrays(int a[], int n, int x)
{
    int count = 0;
 
    int number = 0;
 
    // Iterate in the array
    for (int i = 0; i < n; i++) {
 
        // check if array element
        // greater than X or not
        if (a[i] > x) {
            count += 1;
        }
        else {
 
            number += (count) * (count + 1) / 2;
            count = 0;
        }
    }
 
    // After iteration complete
    // check for the last set of subarrays
    if (count)
        number += (count) * (count + 1) / 2;
 
    return number;
}
 
// Driver Code
int main()
{
    int a[] = { 3, 4, 5, 6, 7, 2, 10, 11 };
    int n = sizeof(a) / sizeof(a[0]);
    int k = 5;
 
    cout << countSubarrays(a, n, k);
 
    return 0;
}


Java




// Java program to print the number of subarrays such
// that all elements are greater than K
 
import java.io.*;
 
class GFG {
     
// Function to count number of subarrays
static int countSubarrays(int a[], int n, int x)
{
    int count = 0;
 
    int number = 0;
 
    // Iterate in the array
    for (int i = 0; i < n; i++) {
 
        // check if array element
        // greater than X or not
        if (a[i] > x) {
            count += 1;
        }
        else {
 
            number += (count) * (count + 1) / 2;
            count = 0;
        }
    }
 
    // After iteration complete
    // check for the last set of subarrays
    if (count!=0)
        number += (count) * (count + 1) / 2;
 
    return number;
}
 
// Driver Code
    public static void main (String[] args) {
        int a[] = { 3, 4, 5, 6, 7, 2, 10, 11 };
        int n = a.length;
        int k = 5;
 
        System.out.println (countSubarrays(a, n, k));
         
    }
}


Python3




# Python program to print the number of
# subarrays such that all elements are
# greater than K
 
# Function to count number of subarrays
def countSubarrays(a, n, x):
    count = 0
    number = 0
     
    # Iterate in the array
    for i in range(n):
         
        # check if array element greater
        # then X or not
        if (a[i] > x):
            count += 1
        else:
            number += (count) * (count + 1) / 2
            count = 0
             
    # After iteration complete check for
    # the last set of subarrays
    if (count):
        number += (count) * (count + 1) / 2
    return int(number)
 
# Driver Code
if __name__ == '__main__':
    a = [3, 4, 5, 6, 7, 2, 10, 11]
    n = len(a)
    k = 5
    print(countSubarrays(a, n, k))
 
# This code is contributed by 29AjayKumar


C#




// C# program to print the number of subarrays such
// that all elements are greater than K
 
using System;
 
class GFG {
     
// Function to count number of subarrays
static int countSubarrays(int []a, int n, int x)
{
    int count = 0;
 
    int number = 0;
 
    // Iterate in the array
    for (int i = 0; i < n; i++) {
 
        // check if array element
        // greater than X or not
        if (a[i] > x) {
            count += 1;
        }
        else {
 
            number += (count) * (count + 1) / 2;
            count = 0;
        }
    }
 
    // After iteration complete
    // check for the last set of subarrays
    if (count!=0)
        number += (count) * (count + 1) / 2;
 
    return number;
}
 
// Driver Code
    public static void Main () {
        int []a = { 3, 4, 5, 6, 7, 2, 10, 11 };
        int n = a.Length;
        int k = 5;
 
        Console.WriteLine(countSubarrays(a, n, k));
         
    }
}
// This code is contributed by anuj_67..


PHP




<?php
// PHP program to print the number
// of subarrays such that all
// elements are greater than K
 
// Function to count number
// of subarrays
function countSubarrays($a, $n, $x)
{
    $count = 0; $number = 0;
 
    // Iterate in the array
    for ($i = 0; $i < $n; $i++)
    {
 
        // check if array element
        // greater than X or not
        if ($a[$i] > $x)
        {
            $count += 1;
        }
        else
        {
            $number += ($count) *
                       ($count + 1) / 2;
            $count = 0;
        }
    }
 
    // After iteration complete
    // check for the last set
    // of subarrays
    if ($count)
        $number += ($count) *
                   ($count + 1) / 2;
 
    return $number;
}
 
// Driver Code
$a = array(3, 4, 5, 6, 7, 2, 10, 11);
$n = count($a);
$k = 5;
 
echo countSubarrays($a, $n, $k);
 
// This code is contributed by anuj_67
?>


Javascript




<script>
// javascript program to print the number of subarrays such
// that all elements are greater than K    
// Function to count number of subarrays
    function countSubarrays(a , n , x) {
        var count = 0;
 
        var number = 0;
 
        // Iterate in the array
        for (i = 0; i < n; i++) {
 
            // check if array element
            // greater than X or not
            if (a[i] > x) {
                count += 1;
            } else {
 
                number += (count) * (count + 1) / 2;
                count = 0;
            }
        }
 
        // After iteration complete
        // check for the last set of subarrays
        if (count != 0)
            number += (count) * (count + 1) / 2;
 
        return number;
    }
 
    // Driver Code
     
        var a = [ 3, 4, 5, 6, 7, 2, 10, 11 ];
        var n = a.length;
        var k = 5;
 
        document.write(countSubarrays(a, n, k));
 
// This code is contributed by todaysgaurav
</script>


Output

6

Complexity Analysis:

  • Time Complexity: O(N) 
  • Auxiliary Space: O(1)

Related Topic: Subarrays, Subsequences, and Subsets in Array

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments