Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIFind the number on the card that remains in the end after...

Find the number on the card that remains in the end after performing the given operations

Given an integer N which represents the number of cards in a deck. The deck is ordered from 1 to N where 1 is the topmost card and N is at the bottom. You take out the topmost card from the deck and insert it at the bottom and throw the next card that appears at the top of the deck. Again you do the same thing until a single card remains. The task is to find the number of the card that remains at the end.
Examples: 
 

Input: N = 4 
Output: 1
1 2 3 4
^     ^
Top   Bottom

Operation 1: 3 4 1 (1 got shifted to the bottom and 2 got removed)
Operation 2: 1 3 (3 got shifted and 4 got removed)
Operation 3: 1 (3 got removed after shifting 1)

Input: N = 10
Output: 5

 

Approach: 
 

  1. First of all insert numbers from 1 to N in a queue.
  2. Now, dequeue the front element from the queue and enqueue it at the end.
  3. Finally, pop the element at the front.
  4. Print the final element left in the queue.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that will find the
// card number which is remaining
int remainingCard(int n)
{
    queue<int> queCards;
 
    // Inserting all the numbers from 1 to n
    for (int i = 1; i <= n; i++)
        queCards.push(i);
 
    // While there are atleast two
    // elements in the queue
    while (((int)queCards.size()) >= 2) {
 
        // Push the front element at the back
        queCards.push(queCards.front());
 
        // Remove the front element
        queCards.pop();
 
        // Remove another element
        queCards.pop();
    }
 
    // Return the only element
    // left in the queue
    return queCards.front();
}
 
// Driver code
int main()
{
    int n = 10;
 
    cout << remainingCard(n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Function that will find the
// card number which is remaining
static int remainingCard(int n)
{
    Queue<Integer> queCards = new LinkedList<>();
 
    // Inserting all the numbers from 1 to n
    for (int i = 1; i <= n; i++)
    {
        queCards.add(i);
    }
 
    // While there are atleast two
    // elements in the queue
    while (((int) queCards.size()) >= 2)
    {
 
        // Push the front element at the back
        queCards.add(queCards.peek());
 
        // Remove the front element
        queCards.remove();
 
        // Remove another element
        queCards.remove();
    }
 
    // Return the only element
    // left in the queue
    return queCards.peek();
}
 
// Driver code
public static void main(String[] args)
{
    int n = 10;
 
    System.out.println(remainingCard(n));
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python3 implementation of the approach
 
# Function that will find the
# card number which is remaining
def remainingCard(n):
 
    queCards = []
 
    # Inserting all the numbers from 1 to n
    for i in range(1, n + 1):
        queCards.append(i)
 
    # While there are atleast two
    # elements in the queue
    while (len(queCards) >= 2):
 
        # Push the front element at the back
        queCards.append(queCards[0]);
 
        # Remove the front element
        queCards.pop(0);
 
        # Remove another element
        queCards.pop(0);
 
    # Return the only element
    # left in the queue
    return queCards[0]
 
# Driver code
n = 10
print(remainingCard(n))
 
# This code is contributed by divyamohan123


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Function that will find the
// card number which is remaining
static int remainingCard(int n)
{
    Queue<int> queCards = new Queue<int>();
 
    // Inserting all the numbers from 1 to n
    for (int i = 1; i <= n; i++)
    {
        queCards.Enqueue(i);
    }
 
    // While there are atleast two
    // elements in the queue
    while (((int) queCards.Count) >= 2)
    {
 
        // Push the front element at the back
        queCards.Enqueue(queCards.Peek());
 
        // Remove the front element
        queCards.Dequeue();
 
        // Remove another element
        queCards.Dequeue();
    }
 
    // Return the only element
    // left in the queue
    return queCards.Peek();
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 10;
 
    Console.WriteLine(remainingCard(n));
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function that will find the
// card number which is remaining
function remainingCard(n)
{
    queCards = [];
 
    // Inserting all the numbers from 1 to n
    for (var i = 1; i <= n; i++)
        queCards.push(i);
 
    // While there are atleast two
    // elements in the queue
    while ((queCards.length) >= 2) {
 
        // Push the front element at the back
        queCards.push(queCards[0]);
 
        // Remove the front element
        queCards.shift();
 
        // Remove another element
        queCards.shift();
    }
 
    // Return the only element
    // left in the queue
    return queCards[0];
}
 
// Driver code
var n = 10;
document.write( remainingCard(n));
 
</script>


Output: 

5

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments