Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICheck if two trees are Mirror | Set 2

Check if two trees are Mirror | Set 2

Given two Binary Trees, returns true if two trees are mirror of each other, else false. 

Mirror Tree : 

Previously discussed approach is here. 
 

Approach: Find the inorder traversal of both the Binary Trees, and check whether one traversal is reverse of another or not. If they are reverse of each other then the trees are mirror of each other, else not. 

Implementation

C++




// C++ code to check two binary trees are
// mirror.
#include<bits/stdc++.h>
using namespace std;
 
struct Node
{
    int data;
    Node* left, *right;
};
 
// inorder traversal of Binary Tree
void inorder(Node *n, vector<int> &v)
{
    if (n->left != NULL)
    inorder(n->left, v);       
    v.push_back(n->data);   
    if (n->right != NULL)
    inorder(n->right, v);
}
 
// Checking if binary tree is mirror
// of each other or not.
bool areMirror(Node* a, Node* b)
{
  if (a == NULL && b == NULL)
    return true;   
  if (a == NULL || b== NULL)
    return false;
  
  // Storing inorder traversals of both
  // the trees.
  vector<int> v1, v2;
  inorder(a, v1);
  inorder(b, v2);
 
  if (v1.size() != v2.size())
     return false;
 
  // Comparing the two arrays, if they
  // are reverse then return 1, else 0
  for (int i=0, j=v2.size()-1; j >= 0;
                             i++, j--)
     
      if (v1[i] != v2[j])
        return false;   
     
  return true;
}
 
// Helper function to allocate a new node
Node* newNode(int data)
{
  Node* node = new Node;
  node->data  = data;
  node->left  =  node->right  = NULL;
   
  return(node);
}
  
// Driver code
int main()
{
  Node *a = newNode(1);
  Node *b = newNode(1);
   
  a -> left = newNode(2);
  a -> right = newNode(3);
  a -> left -> left  = newNode(4);
  a -> left -> right = newNode(5);
  
  b -> left = newNode(3);
  b -> right = newNode(2);
  b -> right -> left = newNode(5);
  b -> right -> right = newNode(4);
  
  areMirror(a, b)? cout << "Yes" : cout << "No";
  
  return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG {
  static class Node {
    public int data;
    public Node left, right;
  }
 
  // inorder traversal of Binary Tree
  static void inorder(Node n, List<Integer> v)
  {
    if (n.left != null)
      inorder(n.left, v);
 
    v.add(n.data);
 
    if (n.right != null)
      inorder(n.right, v);
  }
 
  // Checking if binary tree is mirror of each other or
  // not.
  static boolean areMirror(Node a, Node b)
  {
    if (a == null && b == null)
      return true;
    if (a == null || b == null)
      return false;
 
    // Storing inorder traversals of both the trees.
    List<Integer> v1 = new ArrayList<>();
    List<Integer> v2 = new ArrayList<>();
 
    inorder(a, v1);
    inorder(b, v2);
 
    if (v1.size() != v2.size())
      return false;
 
    // Comparing the two arrays, if they are reverse
    // then return 1, else 0
    for (int i = 0, j = v2.size() - 1; j >= 0;
         i++, j--) {
      if (v1.get(i) != v2.get(j))
        return false;
    }
    return true;
  }
 
  // Helper function to allocate a new node
  static Node newNode(int data)
  {
    Node node = new Node();
    node.data = data;
    node.left = node.right = null;
    return node;
  }
 
  // Driver code
  public static void main(String[] args)
  {
    Node a = newNode(1);
    Node b = newNode(1);
 
    a.left = newNode(2);
    a.right = newNode(3);
    a.left.left = newNode(4);
    a.left.right = newNode(5);
 
    b.left = newNode(3);
    b.right = newNode(2);
    b.right.left = newNode(5);
    b.right.right = newNode(4);
 
    if (areMirror(a, b)) {
      System.out.println("Yes");
    }
    else {
      System.out.println("No");
    }
  }
}
 
// This code is contributed by lokeshpotta20.


Python3




# Python3 code to check two binary trees are
# mirror.
class Node:
 
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
     
# inorder traversal of Binary Tree
def inorder(n, v):
 
    if (n.left != None):
        inorder(n.left, v);       
    v.append(n.data);   
    if (n.right != None):
        inorder(n.right, v);
 
# Checking if binary tree is mirror
# of each other or not.
def areMirror(a, b):
 
    if (a == None and b == None):
        return True;   
    if (a == None or b== None):
        return False;
 
    # Storing inorder traversals of both
    # the trees.
    v1 = []
    v2 = []
    inorder(a, v1);
    inorder(b, v2);
 
    if (len(v1) != len(v2)):
       return False;
 
    # Comparing the two arrays, if they
    # are reverse then return 1, else 0
    i = 0
    j = len(v2) - 1
  
    while j >= 0:
     
        if (v1[i] != v2[j]):
            return False
        i+=1
        j-=1
     
    return True;
 
# Helper function to allocate a new node
def newNode(data):
    node = Node(data)
    return node
      
# Driver code
if __name__=="__main__":
    a = newNode(1);
    b = newNode(1);
     
    a.left = newNode(2);
    a.right = newNode(3);
    a.left.left  = newNode(4);
    a.left.right = newNode(5);
 
    b.left = newNode(3);
    b.right = newNode(2);
    b.right.left = newNode(5);
    b.right.right = newNode(4);
 
    if areMirror(a, b):
        print("Yes")
    else:
        print("No")
 
# This code is contributed by rutvik_56


C#




// C# code to check two binary trees are
// mirror.
using System;
using System.Collections;
using System.Collections.Generic;
 
class GFG{
     
class Node
{
    public int data;
    public Node left, right;
};
  
// inorder traversal of Binary Tree
static void inorder(Node n, ref List<int> v)
{
    if (n.left != null)
        inorder(n.left, ref v);
         
    v.Add(n.data);   
     
    if (n.right != null)
        inorder(n.right, ref v);
}
  
// Checking if binary tree is mirror
// of each other or not.
static bool areMirror(Node a, Node b)
{
    if (a == null && b == null)
        return true;   
    if (a == null || b == null)
        return false;
         
    // Storing inorder traversals of both
    // the trees.
    List<int> v1 = new List<int>();
    List<int> v2 = new List<int>();
     
    inorder(a, ref v1);
    inorder(b, ref v2);
     
    if (v1.Count != v2.Count)
        return false;
     
    // Comparing the two arrays, if they
    // are reverse then return 1, else 0
    for(int i = 0, j = v2.Count - 1; j >= 0;
            i++, j--)
     
    if (v1[i] != v2[j])
        return false;   
     
    return true;
}
  
// Helper function to allocate a new node
static Node newNode(int data)
{
    Node node = new Node();
    node.data = data;
    node.left = node.right = null;
    return(node);
}
   
// Driver code
static void Main(string []args)
{
    Node a = newNode(1);
    Node b = newNode(1);
     
    a.left = newNode(2);
    a.right = newNode(3);
    a.left.left  = newNode(4);
    a.left.right = newNode(5);
     
    b.left = newNode(3);
    b.right = newNode(2);
    b.right.left = newNode(5);
    b.right.right = newNode(4);
     
    if (areMirror(a, b))
    {
        Console.Write("Yes");
    }
    else
    {
        Console.Write("No");
    }
}
}
 
// This code is contributed by pratham76


Javascript




<script>
 
// JavaScript code to check two binary trees are
// mirror.
 
class Node
{
   constructor()
   {
     this.data = 0;
     this.left = null;
     this.right = null;
   }
};
  
// inorder traversal of Binary Tree
function inorder(n, v)
{
    if (n.left != null)
        inorder(n.left, v);
         
    v.push(n.data);   
     
    if (n.right != null)
        inorder(n.right, v);
}
  
// Checking if binary tree is mirror
// of each other or not.
function areMirror(a, b)
{
    if (a == null && b == null)
        return true;   
    if (a == null || b == null)
        return false;
         
    // Storing inorder traversals of both
    // the trees.
    var v1 = [];
    var v2 = [];
     
    inorder(a, v1);
    inorder(b, v2);
     
    if (v1.length != v2.length)
        return false;
     
    // Comparing the two arrays, if they
    // are reverse then return 1, else 0
    for(var i = 0, j = v2.length - 1; j >= 0;
            i++, j--)
     
    if (v1[i] != v2[j])
        return false;   
     
    return true;
}
  
// Helper function to allocate a new node
function newNode(data)
{
    var node = new Node();
    node.data = data;
    node.left = node.right = null;
    return(node);
}
   
// Driver code
var a = newNode(1);
var b = newNode(1);
 
a.left = newNode(2);
a.right = newNode(3);
a.left.left  = newNode(4);
a.left.right = newNode(5);
 
b.left = newNode(3);
b.right = newNode(2);
b.right.left = newNode(5);
b.right.right = newNode(4);
 
if (areMirror(a, b))
{
    document.write("Yes");
}
else
{
    document.write("No");
}
 
 
</script>


Output

Yes

Time Complexity: O(NlogN)

Auxiliary Space: O(N)

This article is contributed by Anuj Chauhan. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks. 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments