Saturday, January 11, 2025
Google search engine
HomeData Modelling & AINth root of a number using log

Nth root of a number using log

Given two integers N and K, the task is to find the Nth root of the K. 

Examples: 

Input: N = 3, K = 8 
Output: 2.00 
Explanation: 
Cube root of 8 is 2. i.e. 23 = 8

Input: N = 2, K = 16 
Output: 4.00 
Explanation: 
Square root of 16 is 4, i.e. 42 = 16 
 

Approach: The idea is to use logarithmic function to find the Nth root of K.

Let D be our Nth root of the K, 
Then, N^{\frac{1}{K}} = D
Apply logK on both the sides – 
=> log_{K}(N^{\frac{1}{K}}) = log_{K}(D)
=> \frac{1}{K} * log_{K}(N) = log_{K}(D)
=> D = K^{\frac{1}{K} * log_{K}(N)}
 

Below is the implementation of the above approach:  

C++




// C++ implementation to find the
// Kth root of a number using log
 
#include <bits/stdc++.h>
 
// Function to find the Kth root
// of the number using log function
double kthRoot(double n, int k)
{
    return pow(k,
               (1.0 / k)
                   * (log(n)
                      / log(k)));
}
 
// Driver Code
int main(void)
{
    double n = 81;
    int k = 4;
    printf("%lf ", kthRoot(n, k));
    return 0;
}


Java




// Java implementation to find the
// Kth root of a number using log
import java.util.*;
 
class GFG {
 
// Function to find the Kth root
// of the number using log function
static double kthRoot(double n, int k)
{
    return Math.pow(k, ((1.0 / k) *
                       (Math.log(n) /
                        Math.log(k))));
}
 
// Driver Code
public static void main(String args[])
{
    double n = 81;
    int k = 4;
     
    System.out.printf("%.6f", kthRoot(n, k));
}
}
 
// This code is contributed by rutvik_56


Python3




# Python3 implementation to find the
# Kth root of a number using log
 
import numpy as np
 
# Function to find the Kth root
# of the number using log function
def kthRoot(n, k):
     
    return pow(k, ((1.0 / k) *
                  (np.log(n) /
                   np.log(k))))
                    
# Driver Code
n = 81
k = 4
 
print("%.6f" % kthRoot(n, k))
 
# This code is contributed by PratikBasu   


C#




// C# implementation to find the
// Kth root of a number using log
using System;
 
class GFG {
 
// Function to find the Kth root
// of the number using log function
static double kthRoot(double n, int k)
{
     
    return Math.Pow(k, ((1.0 / k) *
                        (Math.Log(n) /
                         Math.Log(k))));
}
 
// Driver Code
public static void Main(String []args)
{
    double n = 81;
    int k = 4;
     
    Console.Write("{0:F6}", kthRoot(n, k));
}
}
 
// This code is contributed by AbhiThakur


Javascript




<script>
 
// Javascript implementation to find the
// Kth root of a number using log
 
// Function to find the Kth root
// of the number using log function
function kthRoot(n, k)
{
   return Math.pow(k, ((1.0 / k) *
                       (Math.log(n) /
                        Math.log(k))));
}
  
// Driver Code
var n = 81;
var k = 4;
var x = kthRoot(n, k)
 
document.write(x.toFixed(6));
 
// This code is contributed by Ankita saini
                     
</script>


Output: 

3.000000

 

Time Complexity: O(1)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments