Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIFind the maximum component size after addition of each edge to the...

Find the maximum component size after addition of each edge to the graph

Given an array arr[][] which contains the edges of a graph to be used to construct an undirected graph G with N nodes, the task is to find the maximum component size in the graph after each edge is added while constructing the graph.

Examples: 

Input: N = 4, arr[][] = {{1, 2}, {3, 4}, {2, 3}} 
Output: 2 2 4 
Explanation: 
Initially, the graph has 4 individual nodes 1, 2, 3 and 4. 
After the first edge is added : 1 – 2, 3, 4 -> maximum component size = 2 
After the second edge is added : 1 – 2, 3 – 4 -> maximum component size = 2 
After the third edge is added : 1 – 2 – 3 – 4 -> maximum component size = 4

Input: N = 4, arr[][] = {{2, 3}, {1, 2}, {1, 5}, {2, 4}} 
Output: 2 3 4 5 
 

Naive Approach: The naive approach for this problem is to add the edges sequentially and at each step apply depth-first search algorithm to find the size of the largest component. 

Below is the implementation of the above approach:

C++




// C++ program to find the
// maximum comake_paironent size
// after addition of each
// edge to the graph
#include <bits/stdc++.h>
 
using namespace std;
 
// Function to perform
// Depth First Search
// on the given graph
int dfs(int u, int visited[],
        vector<int>* adj)
{
    // Mark visited
    visited[u] = 1;
    int size = 1;
 
    // Add each child's
    // comake_paironent size
    for (auto child : adj[u]) {
        if (!visited[child])
            size += dfs(child,
                        visited, adj);
    }
    return size;
}
 
// Function to find the maximum
// comake_paironent size
// after addition of each
// edge to the graph
void maxSize(vector<pair<int, int> > e,
             int n)
{
    // Graph in the adjacency
    // list format
    vector<int> adj[n];
 
    // Visited array
    int visited[n];
 
    vector<int> answer;
 
    // At each step, add a new
    // edge and apply dfs on all
    // the nodes to find the maximum
    // comake_paironent size
    for (auto edge : e) {
 
        // Add this edge to undirected graph
        adj[edge.first - 1].push_back(
            edge.second - 1);
        adj[edge.second - 1].push_back(
            edge.first - 1);
 
        // Mark all the nodes
        // as unvisited
        memset(visited, 0,
               sizeof(visited));
 
        int maxAns = 0;
 
        // Loop to perform DFS
        // and find the size
        // of the maximum comake_paironent
        for (int i = 0; i < n; i++) {
            if (!visited[i]) {
                maxAns = max(maxAns,
                             dfs(i, visited, adj));
            }
        }
        answer.push_back(maxAns);
    }
 
    // Print the answer
    for (auto i : answer) {
        cout << i << " ";
    }
}
 
// Driver code
int main()
{
    int N = 4;
    vector<pair<int, int> > E;
    E.push_back(make_pair(1, 2));
    E.push_back(make_pair(3, 4));
    E.push_back(make_pair(2, 3));
 
    maxSize(E, N);
 
    return 0;
}


Java




// Java program to find the maximum
// comake_paironent size after
// addition of each edge to the graph
import java.util.*;
 
@SuppressWarnings("unchecked")
class GFG{
     
static class pair
{
    int Key, Value;
     
    pair(int Key, int Value)
    {
        this.Key = Key;
        this.Value = Value;
    }
}
       
// Function to perform Depth First
// Search on the given graph
static int dfs(int u, int []visited,
               ArrayList []adj)
{
     
    // Mark visited
    visited[u] = 1;
    int size = 1;
   
    // Add each child's
    // comake_paironent size
    for(int child : (ArrayList<Integer>)adj[u])
    {
        if (visited[child] == 0)
            size += dfs(child,
                        visited, adj);
    }
    return size;
}
   
// Function to find the maximum
// comake_paironent size after
// addition of each edge to the graph
static void maxSize(ArrayList e,
                    int n)
{
     
    // Graph in the adjacency
    // list format
    ArrayList []adj = new ArrayList[n];
      
    for(int i = 0; i < n; i++)
    {
        adj[i] = new ArrayList();
    }
      
    // Visited array
    int []visited = new int[n];
   
    ArrayList answer = new ArrayList();
   
    // At each step, add a new
    // edge and apply dfs on all
    // the nodes to find the maximum
    // comake_paironent size
    for(pair edge : (ArrayList<pair>)e)
    {
         
        // Add this edge to undirected graph
        adj[edge.Key - 1].add(
           edge.Value - 1);
        adj[edge.Value - 1].add(
              edge.Key - 1);
               
        // Mark all the nodes
        // as unvisited
        Arrays.fill(visited,0);
   
        int maxAns = 0;
   
        // Loop to perform DFS and find the
        // size of the maximum comake_paironent
        for(int i = 0; i < n; i++)
        {
            if (visited[i] == 0)
            {
                maxAns = Math.max(maxAns,
                              dfs(i, visited, adj));
            }
        }
        answer.add(maxAns);
    }
     
    // Print the answer
    for(int i : (ArrayList<Integer>) answer)
    {
        System.out.print(i + " ");
    }
}
   
// Driver code
public static void main(String[] args)
{
    int N = 4;
     
    ArrayList E = new ArrayList();
    E.add(new pair(1, 2));
    E.add(new pair(3, 4));
    E.add(new pair(2, 3));
   
    maxSize(E, N);
}
}
 
// This code is contributed by pratham76


Python3




# Python3 program to find the
# maximum comake_paironent size
# after addition of each
# edge to the graph
 
# Function to perform
# Depth First Search
# on the given graph
def dfs(u, visited, adj):
   
    # Mark visited
    visited[u] = 1
    size = 1
   
    # Add each child's
    # comake_paironent size
    for child in adj[u]:
        if (visited[child] == 0):
            size += dfs(child, visited, adj)
    return size
   
# Function to find the maximum
# comake_paironent size
# after addition of each
# edge to the graph
def maxSize(e, n):
   
    # Graph in the adjacency
    # list format
    adj = []
      
    for i in range(n):
        adj.append([])
      
    # Visited array
    visited = [0]*(n)
   
    answer = []
   
    # At each step, add a new
    # edge and apply dfs on all
    # the nodes to find the maximum
    # comake_paironent size
    for edge in e:
        # Add this edge to undirected graph
        adj[edge[0] - 1].append(edge[1] - 1)
        adj[edge[1] - 1].append(edge[0] - 1)
   
        # Mark all the nodes
        # as unvisited
        visited = [0]*(n)
   
        maxAns = 0
   
        # Loop to perform DFS
        # and find the size
        # of the maximum comake_paironent
        for i in range(n):
            if (visited[i] == 0):
                maxAns = max(maxAns, dfs(i, visited, adj))
        answer.append(maxAns)
   
    # Print the answer
    for i in answer:
        print(i, "", end = "")
 
N = 4
E = []
E.append([1, 2])
E.append([3, 4])
E.append([2, 3])
 
maxSize(E, N)
 
# This code is contributed by divyesh072019.


C#




// C# program to find the
// maximum comake_paironent size
// after addition of each
// edge to the graph
using System;
using System.Collections;
using System.Collections.Generic;
 
class GFG{
      
// Function to perform
// Depth First Search
// on the given graph
static int dfs(int u, int []visited,
               ArrayList []adj)
{
     
    // Mark visited
    visited[u] = 1;
    int size = 1;
  
    // Add each child's
    // comake_paironent size
    foreach (int child in adj[u])
    {
        if (visited[child] == 0)
            size += dfs(child,
                        visited, adj);
    }
    return size;
}
  
// Function to find the maximum
// comake_paironent size
// after addition of each
// edge to the graph
static void maxSize(ArrayList e,
                    int n)
{
     
    // Graph in the adjacency
    // list format
    ArrayList []adj = new ArrayList[n];
     
    for(int i = 0; i < n; i++)
    {
        adj[i] = new ArrayList();
    }
     
    // Visited array
    int []visited = new int[n];
  
    ArrayList answer = new ArrayList();
  
    // At each step, add a new
    // edge and apply dfs on all
    // the nodes to find the maximum
    // comake_paironent size
    foreach(KeyValuePair<int, int> edge in e)
    {
         
        // Add this edge to undirected graph
        adj[edge.Key - 1].Add(
           edge.Value - 1);
        adj[edge.Value - 1].Add(
              edge.Key - 1);
  
        // Mark all the nodes
        // as unvisited
        Array.Fill(visited,0);
  
        int maxAns = 0;
  
        // Loop to perform DFS
        // and find the size
        // of the maximum comake_paironent
        for(int i = 0; i < n; i++)
        {
            if (visited[i] == 0)
            {
                maxAns = Math.Max(maxAns,
                              dfs(i, visited, adj));
            }
        }
        answer.Add(maxAns);
    }
  
    // Print the answer
    foreach(int i in answer)
    {
        Console.Write(i + " ");
    }
}
  
// Driver code
public static void Main(string[] args)
{
    int N = 4;
    ArrayList E = new ArrayList();
    E.Add(new KeyValuePair<int, int>(1, 2));
    E.Add(new KeyValuePair<int, int>(3, 4));
    E.Add(new KeyValuePair<int, int>(2, 3));
  
    maxSize(E, N);
}
}
 
// This code is contributed by rutvik_56


Javascript




<script>
    // Javascript program to find the
    // maximum comake_paironent size
    // after addition of each
    // edge to the graph
     
    // Function to perform
    // Depth First Search
    // on the given graph
    function dfs(u, visited, adj)
    {
     
        // Mark visited
        visited[u] = 1;
        let size = 1;
 
        // Add each child's
        // comake_paironent size
        for(let child = 0; child < adj[u].length; child++)
        {
            if (visited[adj[u][child]] == 0)
            {
                size += dfs(adj[u][child], visited, adj);
            }
        }
        return size;
    }
 
    // Function to find the maximum
    // comake_paironent size
    // after addition of each
    // edge to the graph
    function maxSize(e, n)
    {
        // Graph in the adjacency
        // list format
        let adj = [];
 
        for(let i = 0; i < n; i++)
        {
            adj.push([]);
        }
 
        // Visited array
        let visited = new Array(n);
        visited.fill(0);
 
        let answer = [];
 
        // At each step, add a new
        // edge and apply dfs on all
        // the nodes to find the maximum
        // comake_paironent size
        for(let edge = 0; edge < e.length; edge++)
        {
            // Add this edge to undirected graph
            adj[e[edge][0] - 1].push(e[edge][1] - 1);
            adj[e[edge][1] - 1].push(e[edge][0] - 1);
 
            // Mark all the nodes
            // as unvisited
            visited.fill(0);
 
            let maxAns = 0;
 
            // Loop to perform DFS
            // and find the size
            // of the maximum comake_paironent
            for(let i = 0; i < n; i++)
            {
                if (visited[i] == 0)
                    maxAns = Math.max(maxAns, dfs(i, visited, adj));
            }
            answer.push(maxAns);
        }
 
        // Print the answer
        for(let i = 0; i < answer.length; i++)
        {
            document.write(answer[i] + " ");
        }
    }
     
    let N = 4;
    let E = [];
    E.push([1, 2]);
    E.push([3, 4]);
    E.push([2, 3]);
  
    maxSize(E, N);
     
    // This code is contributed by divyeshrabadiya07.
</script>


Output: 

2 2 4

 

Time Complexity: O(|E| * N)

Efficient Approach: The idea is to use the concept of Disjoint Set (Union by rank and Path compression) to solve the problem more efficiently. 

  • Each node is initially a disjoint set within itself. As and when the edges are added, the disjoint sets are merged together forming larger components. In the disjoint set implementation, we will make the ranking system based on component sizes i.e when merging of two components is performed the larger component’s root will be considered the final root after the merge operation.
  • One way to find the largest size component after each edge addition is to traverse the size array (size[i] represents the size of the component in which node ‘i’ belongs), but this is inefficient when the number of nodes in the graph is high.
  • A more efficient way is to store the component sizes of all the root in some ordered data structure like sets.
  • When two components are merged, all we need to do is remove the previous component sizes from the set and add the combined component size. So at each step, we would be able to find the largest component size in logarithmic complexity.

Below is the implementation of the above approach:

C++




// C++ implementation to find the maximum
// component size after the addition of
// each edge to the graph
 
#include <bits/stdc++.h>
 
using namespace std;
 
// Variables for implementing DSU
int par[100005];
int size[100005];
 
// Root of the component of node i
int root(int i)
{
    if (par[i] == i)
        return i;
 
    // Finding the root and applying
    // path compression
    else
        return par[i] = root(par[i]);
}
 
// Function to merge two components
void merge(int a, int b)
{
 
    // Find the roots of both
    // the components
    int p = root(a);
    int q = root(b);
 
    // If both the nodes already belong
    // to the same component
    if (p == q)
        return;
 
    // Union by rank, the rank in
    // this case is the size of
    // the component.
    // Smaller size will be
    // merged into larger,
    // so the larger's root
    // will be the final root
    if (size[p] > size[q])
        swap(p, q);
 
    par[p] = q;
    size[q] += size[p];
}
 
// Function to find the
// maximum component size
// after the addition of
// each edge to the graph
void maxSize(vector<pair<int, int> > e, int n)
{
 
    // Initialising the disjoint set
    for (int i = 1; i < n + 1; i++) {
 
        // Each node is the root and
        // each component size is 1
        par[i] = i;
        size[i] = 1;
    }
 
    vector<int> answer;
 
    // A multiset is being used to store
    // the size of the components
    // because multiple components
    // can have same sizes
    multiset<int> compSizes;
    for (int i = 1; i <= n; i++)
        compSizes.insert(size[i]);
 
    // At each step; add a new edge,
    // merge the components
    // and find the max
    // sized component
    for (auto edge : e) {
 
        // Merge operation is required only when
        // both the nodes don't belong to the
        // same component
        if (root(edge.first) != root(edge.second)) {
 
            // Sizes of the components
            int size1 = size[root(edge.first)];
            int size2 = size[root(edge.second)];
 
            // Remove the previous component sizes
            compSizes.erase(compSizes.find(size1));
            compSizes.erase(compSizes.find(size2));
 
            // Perform the merge operation
            merge(edge.first, edge.second);
 
            // Insert the combined size
            compSizes.insert(size1 + size2);
        }
 
        // Maximum value in the multiset is
        // the max component size
        answer.push_back(*compSizes.rbegin());
    }
 
    // Printing the answer
    for (int i = 0; i < answer.size(); i++) {
        cout << answer[i] << " ";
    }
}
 
// Driver code
int main()
{
    int N = 4;
    vector<pair<int, int> > E;
    E.push_back(make_pair(1, 2));
    E.push_back(make_pair(3, 4));
    E.push_back(make_pair(2, 3));
 
    maxSize(E, N);
 
    return 0;
}


Java




/*package whatever //do not write package name here */
import java.io.*;
import java.util.*;
 
// java implementation to find the maximum
// component size after the addition of
// each edge to the graph
class MyPair
{
  private final int key;
  private final int value;
 
  public MyPair(int aKey, int aValue)
  {
    key   = aKey;
    value = aValue;
  }
 
  public int key()   { return key; }
  public int value() { return value; }
}
 
 
class GFG
{
 
 
  // Variables for implementing DSU
  static int[] par = new int[100005];
  static int[] s = new int[100005];
 
  // Root of the component of node i
  static int root(int i)
  {
    if (par[i] == i)
      return i;
 
    // Finding the root and applying
    // path compression
    else
      return par[i] = root(par[i]);
  }
 
  // Function to merge two components
  static void merge(int a, int b)
  {
 
    // Find the roots of both
    // the components
    int p = root(a);
    int q = root(b);
 
    // If both the nodes already belong
    // to the same component
    if (p == q)
      return;
 
    // Union by rank, the rank in
    // this case is the size of
    // the component.
    // Smaller size will be
    // merged into larger,
    // so the larger's root
    // will be the final root
    if (s[p] > s[q]){
      int temp = p;
      p = q;
      q = temp;
    }
 
    par[p] = q;
    s[q] += s[p];
  }
 
  // Function to find the
  // maximum component size
  // after the addition of
  // each edge to the graph
  static void maxSize(ArrayList<MyPair> e, int n)
  {
 
    // Initialising the disjoint set
    for (int i = 1; i < n + 1; i++) {
 
      // Each node is the root and
      // each component size is 1
      par[i] = i;
      s[i] = 1;
    }
 
    ArrayList<Integer> answer = new ArrayList<Integer>();
 
    // A multiset is being used to store
    // the size of the components
    // because multiple components
    // can have same sizes
    ArrayList<Integer> compSizes = new ArrayList<Integer> ();
    for (int i = 1; i <= n; i++)
      compSizes.add(s[i]);
 
    // At each step; add a new edge,
    // merge the components
    // and find the max
    // sized component
    for(int i = 0; i < e.size(); i++){
 
      MyPair edge = e.get(i);
      // Merge operation is required only when
      // both the nodes don't belong to the
      // same component
      if (root(edge.key()) != root(edge.value())) {
 
        // Sizes of the components
        int size1 = s[root(edge.key())];
        int size2 = s[root(edge.value())];
 
        // Remove the previous component sizes
        compSizes.remove(compSizes.indexOf(size1));
        compSizes.remove(compSizes.indexOf(size2));
 
        // Perform the merge operation
        merge(edge.key(), edge.value());
 
        // Insert the combined size
        compSizes.add(size1 + size2);
        Collections.sort(compSizes);
      }
 
      // Maximum value in the multiset is
      // the max component size
      answer.add(compSizes.get(compSizes.size() - 1));
 
    }
 
    // Printing the answer
    for (int i = 0; i < answer.size(); i++) {
      System.out.print(answer.get(i) + " ");
    }
  }
 
  // Driver code
  public static void main(String[] args)
  {
    int N = 4;
    ArrayList<MyPair> E = new ArrayList<MyPair>();
    E.add(new MyPair(1, 2));
    E.add(new MyPair(3, 4));
    E.add(new MyPair(2, 3));
 
    maxSize(E, N);
 
  }
}
 
// This code is contributed by Arushi Jindal.


Python3




# Python3 implementation to find the maximum
# component size after the addition of
# each edge to the graph
 
# Variables for implementing DSU
par=[-1]*100005
size=[-1]*100005
 
# Root of the component of node i
def root(i):
    if (par[i] == i):
        return i
 
    # Finding the root and applying
    # path compression
    par[i] = root(par[i])
    return par[i]
 
 
# Function to merge two components
def merge(a, b):
 
    # Find the roots of both
    # the components
    p = root(a)
    q = root(b)
 
    # If both the nodes already belong
    # to the same component
    if (p == q):
        return
 
    # Union by rank, the rank in
    # this case is the size of
    # the component.
    # Smaller size will be
    # merged into larger,
    # so the larger's root
    # will be the final root
    if (size[p] > size[q]):
        p,q=q,p
 
    par[p] = q
    size[q] += size[p]
 
 
# Function to find the
# maximum component size
# after the addition of
# each edge to the graph
def maxSize(e, n):
 
    # Initialising the disjoint set
    for i in range(1, n + 1):
 
        # Each node is the root and
        # each component size is 1
        par[i] = i
        size[i] = 1
     
 
    answer=[]
 
    # A multiset is being used to store
    # the size of the components
    # because multiple components
    # can have same sizes
    compSizes=dict()
    for i in range(1,n+1):
        compSizes[size[i]]=compSizes.get(size[i],0)+1
 
    # At each step add a new edge,
    # merge the components
    # and find the max
    # sized component
    for  edge in e:
 
        # Merge operation is required only when
        # both the nodes don't belong to the
        # same component
        if (root(edge[0]) != root(edge[1])) :
 
            # Sizes of the components
            size1 = size[root(edge[0])]
            size2 = size[root(edge[1])]
 
            # Remove the previous component sizes
            compSizes[size1]-=1
            if compSizes[size1]==0:
                del compSizes[size1]
            compSizes[size2]-=1
            if compSizes[size2]==0:
                del compSizes[size2]
 
            # Perform the merge operation
            merge(edge[0], edge[1])
 
            # Insert the combined size
            compSizes[size1 + size2]=compSizes.get(size1 + size2,0)+1
         
 
        # Maximum value in the multiset is
        # the max component size
        answer.append(max(compSizes.keys()))
     
 
    # Printing the answer
    for i in range(len(answer)) :
        print(answer[i],end=' ')
     
 
 
# Driver code
if __name__ == '__main__':
    N = 4
    E=[]
    E.append((1, 2))
    E.append((3, 4))
    E.append((2, 3))
 
    maxSize(E, N)


C#




using System;
using System.Collections.Generic;
 
class Program
{
    // Variables for implementing DSU
    static int[] par = new int[100005];
    static int[] size = new int[100005];
 
    // Root of the component of node i
    static int root(int i)
    {
        if (par[i] == i)
            return i;
        else
            return par[i] = root(par[i]);
    }
 
    // Function to merge two components
    static void merge(int a, int b)
    {
        int p = root(a);
        int q = root(b);
 
        if (p == q)
            return;
 
        if (size[p] > size[q])
        {
            int temp = p;
            p = q;
            q = temp;
        }
 
        par[p] = q;
        size[q] += size[p];
    }
 
    // Function to find the
    // maximum component size
    // after the addition of
    // each edge to the graph
    static void maxSize(List<Tuple<int, int>> e, int n)
    {
        for (int i = 1; i < n + 1; i++)
        {
            par[i] = i;
            size[i] = 1;
        }
 
        List<int> answer = new List<int>();
 
        SortedSet<int> compSizes = new SortedSet<int>();
        for (int i = 1; i <= n; i++)
            compSizes.Add(size[i]);
 
        foreach (var edge in e)
        {
            if (root(edge.Item1) != root(edge.Item2))
            {
                int size1 = size[root(edge.Item1)];
                int size2 = size[root(edge.Item2)];
 
                compSizes.Remove(size1);
                compSizes.Remove(size2);
 
                merge(edge.Item1, edge.Item2);
 
                compSizes.Add(size1 + size2);
            }
 
            answer.Add(compSizes.Max);
        }
 
        foreach (int i in answer)
        {
            Console.Write(i + " ");
        }
    }
 
    static void Main(string[] args)
    {
        int N = 4;
        List<Tuple<int, int>> E = new List<Tuple<int, int>>();
        E.Add(Tuple.Create(1, 2));
        E.Add(Tuple.Create(3, 4));
        E.Add(Tuple.Create(2, 3));
 
        maxSize(E, N);
 
        Console.ReadLine();
    }
}


Javascript




// JavaScript implementation to find the maximum
// component size after the addition of
// each edge to the graph
 
// Variables for implementing DSU
const par = [];
const size = [];
 
// Root of the component of node i
function root(i) {
  if (par[i] === i) {
    return i;
  }
 
  // Finding the root and applying
  // path compression
  else {
    return (par[i] = root(par[i]));
  }
}
 
// Function to merge two components
function merge(a, b) {
  // Find the roots of both
  // the components
  let p = root(a);
  let q = root(b);
 
  // If both the nodes already belong
  // to the same component
  if (p === q) {
    return;
  }
 
  // Union by rank, the rank in
  // this case is the size of
  // the component.
  // Smaller size will be
  // merged into larger,
  // so the larger's root
  // will be the final root
  if (size[p] > size[q]) {
    [p, q] = [q, p];
  }
 
  par[p] = q;
  size[q] += size[p];
}
 
// Function to find the
// maximum component size
// after the addition of
// each edge to the graph
function maxSize(e, n) {
  // Initialising the disjoint set
  for (let i = 1; i < n + 1; i++) {
    // Each node is the root and
    // each component size is 1
    par[i] = i;
    size[i] = 1;
  }
 
  const answer = [];
 
  // A set is being used to store
  // the size of the components
  // because multiple components
  // can have same sizes
  const compSizes = new Set(size.slice(1, n + 1));
 
  // At each step; add a new edge,
  // merge the components
  // and find the max
  // sized component
  for (const [a, b] of e) {
    // Merge operation is required only when
    // both the nodes don't belong to the
    // same component
    if (root(a) !== root(b)) {
      // Sizes of the components
      const size1 = size[root(a)];
      const size2 = size[root(b)];
 
      // Remove the previous component sizes
      compSizes.delete(size1);
      compSizes.delete(size2);
 
      // Perform the merge operation
      merge(a, b);
 
      // Insert the combined size
      compSizes.add(size1 + size2);
    }
 
    // Maximum value in the set is
    // the max component size
    answer.push(Math.max(...compSizes));
  }
 
  // Printing the answer
  console.log(answer.join(" "));
}
 
// Driver code
const N = 4;
const E = [
  [1, 2],
  [3, 4],
  [2, 3],
];
 
maxSize(E, N);


Output: 

2 2 4

 

Time Complexity: O(|E| * log(N)) 
Auxiliary Space: O(N) 
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments