Given an N-ary tree consisting of N nodes, the task is to find the node having the largest value in the given N-ary Tree.
Examples:
Input:
Output: 90
Explanation: The node with the largest value in the tree is 90.Input:
Output: 95
Explanation: The node with the largest value in the tree is 95.
Approach: The given problem can be solved by traversing the given N-ary tree and keeping track of the maximum value of nodes that occurred. After completing the traversal, print the maximum value obtained.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Structure of a // node of N-ary tree struct Node { int key; vector<Node*> child; }; // Stores the node with largest value Node* maximum = NULL; // Function to create a new Node Node* newNode( int key) { Node* temp = new Node; temp->key = key; // Return the newly created node return temp; } // Function to find the node with // largest value in N-ary tree void findlargest(Node* root) { // Base Case if (root == NULL) return ; // If maximum is NULL, return // the value of root node if ((maximum) == NULL) maximum = root; // If value of the root is greater // than maximum, update the maximum node else if (root->key > (maximum)->key) { maximum = root; } // Recursively call for all the // children of the root node for ( int i = 0; i < root->child.size(); i++) { findlargest(root->child[i]); } } // Driver Code int main() { // Given N-ary tree Node* root = newNode(11); (root->child).push_back(newNode(21)); (root->child).push_back(newNode(29)); (root->child).push_back(newNode(90)); (root->child[0]->child).push_back(newNode(18)); (root->child[1]->child).push_back(newNode(10)); (root->child[1]->child).push_back(newNode(12)); (root->child[2]->child).push_back(newNode(77)); findlargest(root); // Print the largest value cout << maximum->key; return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Structure of a // node of N-ary tree static class Node { int key; Vector<Node> child = new Vector<>(); }; // Stores the node with largest value static Node maximum = null ; // Function to create a new Node static Node newNode( int key) { Node temp = new Node(); temp.key = key; // Return the newly created node return temp; } // Function to find the node with // largest value in N-ary tree static void findlargest(Node root) { // Base Case if (root == null ) return ; // If maximum is null, return // the value of root node if ((maximum) == null ) maximum = root; // If value of the root is greater // than maximum, update the maximum node else if (root.key > (maximum).key) { maximum = root; } // Recursively call for all the // children of the root node for ( int i = 0 ; i < root.child.size(); i++) { findlargest(root.child.get(i)); } } // Driver Code public static void main(String[] args) { // Given N-ary tree Node root = newNode( 11 ); (root.child).add(newNode( 21 )); (root.child).add(newNode( 29 )); (root.child).add(newNode( 90 )); (root.child.get( 0 ).child).add(newNode( 18 )); (root.child.get( 1 ).child).add(newNode( 10 )); (root.child.get( 1 ).child).add(newNode( 12 )); (root.child.get( 2 ).child).add(newNode( 77 )); findlargest(root); // Print the largest value System.out.print(maximum.key); } } // This code is contributed by Princi Singh |
Python3
# Python3 program for the above approach # Structure of a # node of N-ary tree class Node: # Constructor to set the data of # the newly created tree node def __init__( self , key): self .key = key self .child = [] # Stores the node with largest value maximum = None # Function to create a new Node def newNode(key): temp = Node(key) # Return the newly created node return temp # Function to find the node with # largest value in N-ary tree def findlargest(root): global maximum # Base Case if (root = = None ): return # If maximum is null, return # the value of root node if ((maximum) = = None ): maximum = root # If value of the root is greater # than maximum, update the maximum node elif (root.key > (maximum).key): maximum = root # Recursively call for all the # children of the root node for i in range ( len (root.child)): findlargest(root.child[i]) # Given N-ary tree root = newNode( 11 ) (root.child).append(newNode( 21 )) (root.child).append(newNode( 29 )) (root.child).append(newNode( 90 )) (root.child[ 0 ].child).append(newNode( 18 )) (root.child[ 1 ].child).append(newNode( 10 )) (root.child[ 1 ].child).append(newNode( 12 )) (root.child[ 2 ].child).append(newNode( 77 )) findlargest(root) # Print the largest value print (maximum.key) # This code is contributed by decode2207. |
C#
// C# program for the above approach using System; using System.Collections.Generic; public class GFG{ // Structure of a // node of N-ary tree class Node { public int key; public List<Node> child = new List<Node>(); }; // Stores the node with largest value static Node maximum = null ; // Function to create a new Node static Node newNode( int key) { Node temp = new Node(); temp.key = key; // Return the newly created node return temp; } // Function to find the node with // largest value in N-ary tree static void findlargest(Node root) { // Base Case if (root == null ) return ; // If maximum is null, return // the value of root node if ((maximum) == null ) maximum = root; // If value of the root is greater // than maximum, update the maximum node else if (root.key > (maximum).key) { maximum = root; } // Recursively call for all the // children of the root node for ( int i = 0; i < root.child.Count; i++) { findlargest(root.child[i]); } } // Driver Code public static void Main(String[] args) { // Given N-ary tree Node root = newNode(11); (root.child).Add(newNode(21)); (root.child).Add(newNode(29)); (root.child).Add(newNode(90)); (root.child[0].child).Add(newNode(18)); (root.child[1].child).Add(newNode(10)); (root.child[1].child).Add(newNode(12)); (root.child[2].child).Add(newNode(77)); findlargest(root); // Print the largest value Console.Write(maximum.key); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript program for the above approach // Structure of a // node of N-ary tree class Node { constructor(key) { this .key = key; this .child = []; } } // Stores the node with largest value let maximum = null ; // Function to create a new Node function newNode(key) { let temp = new Node(key); // Return the newly created node return temp; } // Function to find the node with // largest value in N-ary tree function findlargest(root) { // Base Case if (root == null ) return ; // If maximum is null, return // the value of root node if ((maximum) == null ) maximum = root; // If value of the root is greater // than maximum, update the maximum node else if (root.key > (maximum).key) { maximum = root; } // Recursively call for all the // children of the root node for (let i = 0; i < root.child.length; i++) { findlargest(root.child[i]); } } // Given N-ary tree let root = newNode(11); (root.child).push(newNode(21)); (root.child).push(newNode(29)); (root.child).push(newNode(90)); (root.child[0].child).push(newNode(18)); (root.child[1].child).push(newNode(10)); (root.child[1].child).push(newNode(12)); (root.child[2].child).push(newNode(77)); findlargest(root); // Print the largest value document.write(maximum.key); // This code is contributed by surehs07. </script> |
90
Time Complexity: O(N)
Auxiliary Space: O(N) In the worst case, if the tree is a skewed tree, then the space complexity can be O(n) due to function call stack.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!