Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIProgram for average of an array without running into overflow

Program for average of an array without running into overflow

Given an array arr[] of size N, the task is to find the average of the array elements without running into overflow.

Examples:

Input: arr[] = { INT_MAX, INT_MAX }
Output:
Average by Standard method: -1.0000000000
Average by Efficient method: 2147483647.0000000000
Explanation: 
The average of the two numbers by standard method is (sum / 2).
Since the sum of the two numbers exceed INT_MAX, the obtained output by standard method is incorrect.

Input: arr[] = { INT_MAX, 1, 2 }
Output:
Average by Standard method: -715827882.0000000000
Average by Efficient method: 715827883.3333332539

 

Approach: The given problem can be solved based on the following observations: 

  • The average of N array elements can be obtained by dividing the sum of the array elements by N. But, calculating sum of the array arr[] may lead to integer overflow, if the array contains large integers.
  • Therefore, average of the array can be calculated efficiently by the following steps:
    • Traverse the array, using a variable i over the range of indices [0, N – 1] 
    • Update avg = (avg+ (arr[i] – avg)/(i+1))

Follow the steps below to solve the problem:

  • Initialize two variables, say sum as 0 and avg as 0, to store the sum and average of the array elements respectively.
  • Traverse the array arr[], update avg = avg + (arr[i] – avg) / (i + 1) and update sum = sum + arr[i].
  • After completing the above steps, print the average by the standard method, i.e. sum / N and print the average by the efficient method, i.e. avg

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate average of
// an array using standard method
double average(int arr[], int N)
{
    // Stores the sum of array
    int sum = 0;
 
    // Find the sum of the array
    for (int i = 0; i < N; i++)
        sum += arr[i];
 
    // Return the average
    return (double)sum / N;
}
 
// Function to calculate average of
// an array using efficient method
double mean(int arr[], int N)
{
    // Store the average of the array
    double avg = 0;
 
    // Traverse the array arr[]
    for (int i = 0; i < N; i++) {
 
        // Update avg
        avg += (arr[i] - avg) / (i + 1);
    }
 
    // Return avg
    return avg;
}
 
// Driver Code
int main()
{
    // Input
    int arr[] = { INT_MAX, 1, 2 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function call
    cout << "Average by Standard method: " << fixed
         << setprecision(10) << average(arr, N) << endl;
 
    cout << "Average by Efficient method: " << fixed
         << setprecision(10) << mean(arr, N) << endl;
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG{
  
// Function to calculate average of
// an array using standard method
static Double average(int arr[], int N)
{
   
    // Stores the sum of array
    int sum = 0;
 
    // Find the sum of the array
    for (int i = 0; i < N; i++)
        sum += arr[i];
 
    // Return the average
    return Double.valueOf(sum / N);
}
 
// Function to calculate average of
// an array using efficient method
static Double mean(int arr[], int N)
{
   
    // Store the average of the array
    Double avg = 0.0;
 
    // Traverse the array arr[]
    for (int i = 0; i < N; i++)
    {
 
        // Update avg
        avg += Double.valueOf((arr[i] - avg) / (i + 1));
    }
 
    // Return avg
    return avg;
}
 
// Driver Code
public static void main(String args[])
{
   
    // Input
    int arr[] = {Integer.MAX_VALUE, 1, 2 };
    int N = arr.length;
   
    // Function call
    System.out.println("Average by Standard method: "+ String.format("%.10f", average(arr, N)));
    System.out.println("Average by Efficient method: "+ String.format("%.10f", mean(arr, N)));
}
}
 
// This code is contributed by ipg2016107.


Python3




# Python3 program for the above approach
import sys
 
# Function to calculate average of
# an array using standard method
def average(arr, N):
     
    # Stores the sum of array
    sum = 0
 
    # Find the sum of the array
    for i in range(N):
        sum += arr[i]
 
    # Return the average
    return sum // N * 1.0 - 1
 
# Function to calculate average of
# an array using efficient method
def mean(arr, N):
     
    # Store the average of the array
    avg = 0
 
    # Traverse the array arr[]
    for i in range(N):
         
        # Update avg
        avg += (arr[i] - avg) / (i + 1)
 
    # Return avg
    return round(avg, 7)
 
# Driver Code
if __name__ == '__main__':
     
    # Input
    arr = [2147483647, 1, 2]
    N = len(arr)
 
    # Function call
    print("Average by Standard method: ","{:.10f}".format(
        -1.0 * average(arr, N)))
 
    print("Average by Efficient method: ","{:.10f}".format(
        mean(arr, N)))
 
# This code is contributed by mohit kumar 29


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to calculate average of
// an array using standard method
static double average(int[] arr, int N)
{
     
    // Stores the sum of array
    int sum = 0;
 
    // Find the sum of the array
    for(int i = 0; i < N; i++)
        sum += arr[i];
 
    // Return the average
    return (double)(sum / N);
}
 
// Function to calculate average of
// an array using efficient method
static double mean(int[] arr, int N)
{
 
    // Store the average of the array
    double avg = 0.0;
 
    // Traverse the array arr[]
    for(int i = 0; i < N; i++)
    {
         
        // Update avg
        avg += ((double)((arr[i] - avg) / (i + 1)));
    }
 
    // Return avg
    return avg;
}
 
// Driver Code
static public void Main()
{
 
    // Input
    int[] arr = { Int32.MaxValue, 1, 2 };
    int N = arr.Length;
 
    // Function call
    Console.WriteLine("Average by Standard method: " +
         (average(arr, N)).ToString("F10"));
    Console.WriteLine("Average by Efficient method: " +
         (mean(arr, N)).ToString("F10"));
}
}
 
// This code is contributed by Dharanendra L V.


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to calculate average of
// an array using standard method
function average(arr, N)
{
    // Stores the sum of array
    var sum = 0;
 
    // Find the sum of the array
    for(var i = 0; i < N; i++)
        sum += arr[i];
 
    if(sum>2147483647)
    {
        sum = -2147483647 + (sum - 2147483649)
    }
 
    // Return the average
    return parseInt(sum / N);
}
 
// Function to calculate average of
// an array using efficient method
function mean(arr, N)
{
    // Store the average of the array
    var avg = 0;
 
    // Traverse the array arr[]
    for(var i = 0; i < N; i++) {
 
        // Update avg
        avg += parseFloat((arr[i] - avg) / (i + 1));
    }
 
    // Return avg
    return avg;
}
 
// Driver Code
// Input
var arr = [2147483647, 1, 2 ];
var N = arr.length
// Function call
document.write( "Average by Standard method: " + average(arr, N).toFixed(10) + "<br>");
document.write( "Average by Efficient method: " + mean(arr, N).toFixed(10)+ "<br>");
 
</script>


Output: 

Average by Standard method: -715827882.0000000000
Average by Efficient method: 715827883.3333332539

 

Time Complexity: O(N)
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments