Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIFind the root of the sub-tree whose weighted sum is minimum

Find the root of the sub-tree whose weighted sum is minimum

Given a tree, and the weights of all the nodes, the task is to find the root of the sub-tree whose weighted sum is minimum.

Examples: 

Input: 
 

Output:
Weight of sub-tree for parent 1 = ((-1) + (5) + (-2) + (-1) + (3)) = 4 
Weight of sub-tree for parent 2 = ((5) + (-1) + (3)) = 7 
Weight of sub-tree for parent 3 = -1 
Weight of sub-tree for parent 4 = 3 
Weight of sub-tree for parent 5 = -2 
Node 5 gives the minimum sub-tree weighted sum. 
 

Approach: Perform dfs on the tree, and for every node calculate the sub-tree weighted sum rooted at the current node then find the minimum sum value for a node.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
int ans = 0, mini = INT_MAX;
 
vector<int> graph[100];
vector<int> weight(100);
 
// Function to perform dfs and update the tree
// such that every node's weight is the sum of
// the weights of all the nodes in the sub-tree
// of the current node including itself
void dfs(int node, int parent)
{
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
 
        // Calculating the weighted
        // sum of the subtree
        weight[node] += weight[to];
    }
}
 
// Function to find the node
// having minimum sub-tree sum
void findMin(int n)
{
 
    // For every node
    for (int i = 1; i <= n; i++) {
 
        // If current node's weight
        // is minimum so far
        if (mini > weight[i]) {
            mini = weight[i];
            ans = i;
        }
    }
}
 
// Driver code
int main()
{
    int n = 5;
 
    // Weights of the node
    weight[1] = -1;
    weight[2] = 5;
    weight[3] = -1;
    weight[4] = 3;
    weight[5] = -2;
 
    // Edges of the tree
    graph[1].push_back(2);
    graph[2].push_back(3);
    graph[2].push_back(4);
    graph[1].push_back(5);
 
    dfs(1, 1);
    findMin(n);
 
    cout << ans;
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
    static int ans = 0, mini = Integer.MAX_VALUE;
     
    @SuppressWarnings("unchecked")
    static Vector<Integer>[] graph = new Vector[100];
    static Integer[] weight = new Integer[100];
 
    // Function to perform dfs and update the tree
    // such that every node's weight is the sum of
    // the weights of all the nodes in the sub-tree
    // of the current node including itself
    static void dfs(int node, int parent)
    {
        for (int to : graph[node])
        {
            if (to == parent)
                continue;
            dfs(to, node);
 
            // Calculating the weighted
            // sum of the subtree
            weight[node] += weight[to];
        }
    }
 
    // Function to find the node
    // having minimum sub-tree sum  x
    static void findMin(int n)
    {
 
        // For every node
        for (int i = 1; i <= n; i++)
        {
 
            // If current node's weight  x
            // is minimum so far
            if (mini > weight[i])
            {
                mini = weight[i];
                ans = i;
            }
        }
    }
 
    // Driver code
    public static void main(String[] args)
    {
         
        int n = 5;
        for (int i = 0; i < 100; i++)
            graph[i] = new Vector<Integer>();
         
        // Weights of the node
        weight[1] = -1;
        weight[2] = 5;
        weight[3] = -1;
        weight[4] = 3;
        weight[5] = -2;
 
        // Edges of the tree
        graph[1].add(2);
        graph[2].add(3);
        graph[2].add(4);
        graph[1].add(5);
 
        dfs(1, 1);
        findMin(n);
 
        System.out.print(ans);
    }
}
 
// This code is contributed by shubhamsingh10


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
    static int ans = 0, mini = int.MaxValue;
 
    static List<int>[] graph = new List<int>[100];
    static int[] weight = new int[100];
  
    // Function to perform dfs and update the tree
    // such that every node's weight is the sum of
    // the weights of all the nodes in the sub-tree
    // of the current node including itself
    static void dfs(int node, int parent)
    {
        foreach (int to in graph[node])
        {
            if (to == parent)
                continue;
            dfs(to, node);
  
            // Calculating the weighted
            // sum of the subtree
            weight[node] += weight[to];
        }
    }
  
    // Function to find the node
    // having minimum sub-tree sum  x
    static void findMin(int n)
    {
  
        // For every node
        for (int i = 1; i <= n; i++)
        {
  
            // If current node's weight  x
            // is minimum so far
            if (mini > weight[i])
            {
                mini = weight[i];
                ans = i;
            }
        }
    }
  
    // Driver code
    public static void Main(String[] args)
    {
          
        int n = 5;
        for (int i = 0; i < 100; i++)
            graph[i] = new List<int>();
          
        // Weights of the node
        weight[1] = -1;
        weight[2] = 5;
        weight[3] = -1;
        weight[4] = 3;
        weight[5] = -2;
  
        // Edges of the tree
        graph[1].Add(2);
        graph[2].Add(3);
        graph[2].Add(4);
        graph[1].Add(5);
  
        dfs(1, 1);
        findMin(n);
  
        Console.Write(ans);
    }
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 implementation of the approach
ans = 0
mini = 2**32
 
graph = [[] for i in range(100)]
weight = [0]*100
 
# Function to perform dfs and update the tree
# such that every node's weight is the sum of
# the weights of all the nodes in the sub-tree
# of the current node including itself
def dfs(node, parent):
    global mini, graph, weight, ans
    for to in graph[node]:
        if (to == parent):
            continue
        dfs(to, node)
         
        # Calculating the weighted
        # sum of the subtree
        weight[node] += weight[to]
     
# Function to find the node
# having minimum sub-tree sum
def findMin(n):
    global mini, graph, weight, ans
     
    # For every node
    for i in range(1, n + 1):
         
        # If current node's weight
        # is minimum so far
        if (mini > weight[i]):
            mini = weight[i]
            ans = i
 
# Driver code
n = 5
 
# Weights of the node
weight[1] = -1
weight[2] = 5
weight[3] = -1
weight[4] = 3
weight[5] = -2
 
# Edges of the tree
graph[1].append(2)
graph[2].append(3)
graph[2].append(4)
graph[1].append(5)
 
dfs(1, 1)
findMin(n)
 
print(ans)
 
# This code is contributed by SHUBHAMSINGH10


Javascript




<script>
  
// Javascript implementation of the approach
     
let ans = 0;
let mini = Number.MAX_VALUE;
 
let graph = new Array(100);
let weight = new Array(100);
for(let i = 0; i < 100; i++)
{
    graph[i] = [];
    weight[i] = 0;
}
 
// Function to perform dfs and update the tree
// such that every node's weight is the sum of
// the weights of all the nodes in the sub-tree
// of the current node including itself
function dfs(node, parent)
{
    for(let to = 0; to < graph[node].length; to++)
    {
        if (graph[node][to] == parent)
            continue
             
        dfs(graph[node][to], node); 
         
        // Calculating the weighted
        // sum of the subtree
        weight[node] += weight[graph[node][to]];
    }
}
 
// Function to find the node
// having minimum sub-tree sum
function findMin(n)
{
 
    // For every node
    for(let i = 1; i <= n; i++)
    {
         
        // If current node's weight
        // is minimum so far
        if (mini > weight[i])
        {
            mini = weight[i];
            ans = i;
        }
    }
}
 
// Driver code
let n = 5;
 
// Weights of the node
weight[1] = -1;
weight[2] = 5;
weight[3] = -1;
weight[4] = 3;
weight[5] = -2;
 
// Edges of the tree
graph[1].push(2);
graph[2].push(3);
graph[2].push(4);
graph[1].push(5);
 
dfs(1, 1);
findMin(n);
 
document.write(ans);
 
// This code is contributed by Dharanendra L V.
      
</script>


Output: 

5

 

Complexity Analysis: 

  • Time Complexity : O(N). 
    In dfs, every node of the tree is processed once and hence the complexity due to the dfs is O(N) if there are total N nodes in the tree. Therefore, the time complexity is O(N).
  • Auxiliary Space : O(n). 
    Recursion stack.

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments