Given a Binary tree and number of nodes in the tree, the task is to find the number of pairs violating the BST property. Binary Search Tree is a node-based binary tree data structure which has the following properties:
- The left subtree of a node contains only nodes with keys lesser than the node’s key.
- The right subtree of a node contains only nodes with keys greater than the node’s key.
- The left and right subtree each must also be a binary search tree.
Examples:
Input: 4 / \ 5 6 Output: 1 For the above binary tree, pair (5, 4) violate the BST property. Thus, count of pairs violating BST property is 1. Input: 50 / \ 30 60 / \ / \ 20 25 10 40 Output: 7 For the above binary tree, pairs (20, 10), (25, 10), (30, 25), (30, 10), (50, 10), (50, 40), (60, 40) violate the BST property. Thus, count of pairs violating BST property is 7.
Approach:
- Store the inorder traversal of the binary tree in an array.
- Now count all the pairs such that a[i] > a[j] for i < j which is number of inversions in the array.
- Print the count of pairs violating BST property.
Below is the implementation of the above approach:
Java
// Java program to count number of pairs // in a binary tree violating the BST property import java.io.*; import java.util.*; // Class that represents a node of the tree class Node { int data; Node left, right; // Constructor to create a new tree node Node( int key) { data = key; left = right = null ; } } class GFG { // This method sorts the input array and returns the // number of inversions in the array static int mergeSort( int arr[], int array_size) { int temp[] = new int [array_size]; return _mergeSort(arr, temp, 0 , array_size - 1 ); } // An auxiliary recursive method that sorts // the input array and returns the number of // inversions in the array static int _mergeSort( int arr[], int temp[], int left, int right) { int mid, inv_count = 0 ; if (right > left) { // Divide the array into two parts and // call _mergeSortAndCountInv() for each // of the parts mid = (right + left) / 2 ; // Inversion count will be sum of inversions // in left-part, right-part and number of // inversions in merging inv_count = _mergeSort(arr, temp, left, mid); inv_count += _mergeSort(arr, temp, mid + 1 , right); // Merge the two parts inv_count += merge(arr, temp, left, mid + 1 , right); } return inv_count; } // This method merges two sorted arrays and returns // inversion count in the arrays static int merge( int arr[], int temp[], int left, int mid, int right) { int i, j, k; int inv_count = 0 ; // i is index for left subarray i = left; // j is index for right subarray j = mid; // k is index for resultant merged subarray k = left; while ((i <= mid - 1 ) && (j <= right)) { if (arr[i] <= arr[j]) { temp[k++] = arr[i++]; } else { temp[k++] = arr[j++]; inv_count = inv_count + (mid - i); } } // Copy the remaining elements of left subarray // (if there are any) to temp while (i <= mid - 1 ) temp[k++] = arr[i++]; // Copy the remaining elements of right subarray // if there are any) to temp while (j <= right) temp[k++] = arr[j++]; // Copy back the merged elements to original array for (i = left; i <= right; i++) arr[i] = temp[i]; return inv_count; } // Array to store // inorder traversal of the binary tree static int [] a; static int in; // Inorder traversal of the binary tree static void Inorder(Node node) { if (node == null ) return ; Inorder(node.left); a[in++] = node.data; Inorder(node.right); } // Function to count the pairs // in a binary tree violating BST property static int pairsViolatingBST(Node root, int N) { if (root == null ) return 0 ; in = 0 ; a = new int [N]; Inorder(root); // Total inversions in the array int inversionCount = mergeSort(a, N); return inversionCount; } // Driver code public static void main(String args[]) { int N = 7 ; Node root = new Node( 50 ); root.left = new Node( 30 ); root.right = new Node( 60 ); root.left.left = new Node( 20 ); root.left.right = new Node( 25 ); root.right.left = new Node( 10 ); root.right.right = new Node( 40 ); System.out.println(pairsViolatingBST(root, N)); } } |
Python3
# Python3 program to count number of pairs # in a binary tree violating the BST property # Class that represents a node of the tree class newNode: def __init__( self , key): self .data = key self .left = None self .right = None # Array to store # inorder traversal of the binary tree a = [] id = 0 # This method sorts the input array # and returns the number of inversions # in the array def mergeSort(array_size): temp = [ 0 ] * array_size return _mergeSort(temp, 0 , array_size - 1 ) # An auxiliary recursive method that sorts # the input array and returns the number of # inversions in the array def _mergeSort(temp, left, right): inv_count = 0 if (right > left): # Divide the array into two parts and # call _mergeSortAndCountInv() for each # of the parts mid = (right + left) / / 2 # Inversion count will be sum of inversions # in left-part, right-part and number of # inversions in merging inv_count = _mergeSort(temp, left, mid) inv_count + = _mergeSort(temp, mid + 1 , right) # Merge the two parts inv_count + = merge(temp, left, mid + 1 , right) return inv_count # This method merges two sorted arrays # and returns inversion count in the arrays def merge(temp, left, mid, right): global a inv_count = 0 # i is index for left subarray i = left # j is index for right subarray j = mid # k is index for resultant merged subarray k = left while ((i < = mid - 1 ) and (j < = right)): if (a[i] < = a[j]): temp[k] = a[i] k + = 1 i + = 1 else : temp[k] = a[j] k + = 1 j + = 1 inv_count = inv_count + (mid - i) # Copy the remaining elements of left # subarray (if there are any) to temp while (i < = mid - 1 ): temp[k] = a[i] k + = 1 i + = 1 # Copy the remaining elements of right # subarray if there are any) to temp while (j < = right): temp[k] = a[j] k + = 1 j + = 1 # Copy back the merged elements # to original array for i in range (left, right + 1 , 1 ): a[i] = temp[i] return inv_count # Inorder traversal of the binary tree def Inorder(node): global a global id if (node = = None ): return Inorder(node.left) a.append(node.data) id + = 1 Inorder(node.right) # Function to count the pairs # in a binary tree violating # BST property def pairsViolatingBST(root, N): if (root = = None ): return 0 Inorder(root) # Total inversions in the array inversionCount = mergeSort(N) return inversionCount # Driver code if __name__ = = '__main__' : N = 7 root = newNode( 50 ) root.left = newNode( 30 ) root.right = newNode( 60 ) root.left.left = newNode( 20 ) root.left.right = newNode( 25 ) root.right.left = newNode( 10 ) root.right.right = newNode( 40 ) print (pairsViolatingBST(root, N)) # This code is contributed by bgangwar59 |
C#
// C# program to count number of pairs // in a binary tree violating the BST property using System; // Class that represents a node of the tree public class Node { public int data; public Node left, right; // Constructor to create a new tree node public Node( int key) { data = key; left = right = null ; } } class GFG { // This method sorts the input array and returns the // number of inversions in the array static int mergeSort( int [] arr, int array_size) { int [] temp = new int [array_size]; return _mergeSort(arr, temp, 0, array_size - 1); } // An auxiliary recursive method that sorts // the input array and returns the number of // inversions in the array static int _mergeSort( int [] arr, int [] temp, int left, int right) { int mid, inv_count = 0; if (right > left) { // Divide the array into two parts and // call _mergeSortAndCountInv() for each // of the parts mid = (right + left) / 2; // Inversion count will be sum of inversions // in left-part, right-part and number of // inversions in merging inv_count = _mergeSort(arr, temp, left, mid); inv_count += _mergeSort(arr, temp, mid + 1, right); // Merge the two parts inv_count += merge(arr, temp, left, mid + 1, right); } return inv_count; } // This method merges two sorted arrays and returns // inversion count in the arrays static int merge( int [] arr, int [] temp, int left, int mid, int right) { int i, j, k; int inv_count = 0; // i is index for left subarray i = left; // j is index for right subarray j = mid; // k is index for resultant merged subarray k = left; while ((i <= mid - 1) && (j <= right)) { if (arr[i] <= arr[j]) { temp[k++] = arr[i++]; } else { temp[k++] = arr[j++]; inv_count = inv_count + (mid - i); } } // Copy the remaining elements of left subarray // (if there are any) to temp while (i <= mid - 1) temp[k++] = arr[i++]; // Copy the remaining elements of right subarray // if there are any) to temp while (j <= right) temp[k++] = arr[j++]; // Copy back the merged elements to original array for (i = left; i <= right; i++) arr[i] = temp[i]; return inv_count; } // Array to store // inorder traversal of the binary tree static int [] a; static int i; // Inorder traversal of the binary tree static void Inorder(Node node) { if (node == null ) return ; Inorder(node.left); a[i++] = node.data; Inorder(node.right); } // Function to count the pairs // in a binary tree violating BST property static int pairsViolatingBST(Node root, int N) { if (root == null ) return 0; i = 0; a = new int [N]; Inorder(root); // Total inversions in the array int inversionCount = mergeSort(a, N); return inversionCount; } // Driver code public static void Main(String[] args) { int N = 7; Node root = new Node(50); root.left = new Node(30); root.right = new Node(60); root.left.left = new Node(20); root.left.right = new Node(25); root.right.left = new Node(10); root.right.right = new Node(40); Console.WriteLine(pairsViolatingBST(root, N)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // JavaScript program to count number of pairs // in a binary tree violating the BST property // Class that represents a node of the tree class Node { // Constructor to create a new tree node constructor(key) { this .data = key; this .left = null ; this .right = null ; } } // This method sorts the input array and returns the // number of inversions in the array function mergeSort(arr, array_size) { var temp = new Array(array_size).fill(0); return _mergeSort(arr, temp, 0, array_size - 1); } // An auxiliary recursive method that sorts // the input array and returns the number of // inversions in the array function _mergeSort(arr, temp, left, right) { var mid, inv_count = 0; if (right > left) { // Divide the array into two parts and // call _mergeSortAndCountInv() for each // of the parts mid = parseInt((right + left) / 2); // Inversion count will be sum of inversions // in left-part, right-part and number of // inversions in merging inv_count = _mergeSort(arr, temp, left, mid); inv_count += _mergeSort(arr, temp, mid + 1, right); // Merge the two parts inv_count += merge(arr, temp, left, mid + 1, right); } return inv_count; } // This method merges two sorted arrays and returns // inversion count in the arrays function merge(arr, temp, left, mid, right) { var i, j, k; var inv_count = 0; // i is index for left subarray i = left; // j is index for right subarray j = mid; // k is index for resultant merged subarray k = left; while (i <= mid - 1 && j <= right) { if (arr[i] <= arr[j]) { temp[k++] = arr[i++]; } else { temp[k++] = arr[j++]; inv_count = inv_count + (mid - i); } } // Copy the remaining elements of left subarray // (if there are any) to temp while (i <= mid - 1) temp[k++] = arr[i++]; // Copy the remaining elements of right subarray // if there are any) to temp while (j <= right) temp[k++] = arr[j++]; // Copy back the merged elements to original array for (i = left; i <= right; i++) arr[i] = temp[i]; return inv_count; } // Array to store // inorder traversal of the binary tree var a = []; var i; // Inorder traversal of the binary tree function Inorder(node) { if (node == null ) return ; Inorder(node.left); a[i++] = node.data; Inorder(node.right); } // Function to count the pairs // in a binary tree violating BST property function pairsViolatingBST(root, N) { if (root == null ) return 0; i = 0; a = new Array(N).fill(0); Inorder(root); // Total inversions in the array var inversionCount = mergeSort(a, N); return inversionCount; } // Driver code var N = 7; var root = new Node(50); root.left = new Node(30); root.right = new Node(60); root.left.left = new Node(20); root.left.right = new Node(25); root.right.left = new Node(10); root.right.right = new Node(40); document.write(pairsViolatingBST(root, N) + "<br>" ); // This code is contributed by rdtank. </script> |
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Class that represents a node of the tree class Node { public : int data; Node* left, * right; // Constructor to create a new tree node Node( int key) { data = key; left = right = nullptr; } }; class GFG { public : static int mergeSort( int * arr, int array_size); static int _mergeSort( int * arr, int * temp, int left, int right); static int merge( int * arr, int * temp, int left, int mid, int right); static void Inorder(Node* node); static int pairsViolatingBST(Node* root, int N); }; // This method sorts the input array and returns the // number of inversions in the array int GFG::mergeSort( int * arr, int array_size) { int * temp = new int [array_size]; return _mergeSort(arr, temp, 0, array_size - 1); } // An auxiliary recursive method that sorts // the input array and returns the number of // inversions in the array int GFG::_mergeSort( int * arr, int * temp, int left, int right) { int mid, inv_count = 0; if (right > left) { // Divide the array into two parts and // call _mergeSortAndCountInv() for each // of the parts mid = (right + left) / 2; // Inversion count will be sum of inversions // in left-part, right-part and number of // inversions in merging inv_count = _mergeSort(arr, temp, left, mid); inv_count += _mergeSort(arr, temp, mid + 1, right); // Merge the two parts inv_count += merge(arr, temp, left, mid + 1, right); } return inv_count; } // This method merges two sorted arrays and returns // inversion count in the arrays int GFG::merge( int * arr, int * temp, int left, int mid, int right) { int i, j, k; int inv_count = 0; // i is index for left subarray i = left; // j is index for right subarray j = mid; // k is index for resultant merged subarray k = left; while ((i <= mid - 1) && (j <= right)) { if (arr[i] <= arr[j]) { temp[k++] = arr[i++]; } else { temp[k++] = arr[j++]; inv_count = inv_count + (mid - i); } } // Copy the remaining elements of right subarray // if there are any) to temp while (i <= mid - 1) temp[k++] = arr[i++]; // Copy the remaining elements of right subarray // if there are any) to temp while (j <= right) temp[k++] = arr[j++]; // Copy back the merged elements to original array for (i = left; i <= right; i++) arr[i] = temp[i]; return inv_count; } // Array to store // inorder traversal of the binary tree int * a; int i; // Inorder traversal of the binary tree void GFG::Inorder(Node* node) { if (node == nullptr) return ; Inorder(node->left); a[i++] = node->data; Inorder(node->right); } // Function to count the pairs // in a binary tree violating BST property int GFG::pairsViolatingBST(Node* root, int N) { if (root == nullptr) return 0; i = 0; a = new int [N]; Inorder(root); // Total inversions in the array int inversionCount = mergeSort(a, N); return inversionCount; } // Driver Code int main() { int N = 7; Node* root = new Node(50); root->left = new Node(30); root->right = new Node(60); root->left->left = new Node(20); root->left->right = new Node(25); root->right->left = new Node(10); root->right->right = new Node(40); cout << GFG::pairsViolatingBST(root, N) << endl; return 0; } // This code is contributed by codebraxnzt |
7
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!