Given a Binary Tree, the task is to print the Reverse zigzag Order of the tree.
Examples:
Input: 1 / \ 2 3 / \ \ 4 5 6 Output: 6 5 4 2 3 1 Input: 5 / \ 9 3 / \ 6 4 / \ 8 7 Output: 7 8 6 4 3 9 5
Approach: The idea is to traverse the tree in a Reverse Level Order manner but with a slight modification. We will use a variable flag and initially set it’s value to one. As we complete the reverse level order traversal of the tree, from right to left we will set the value of flag to zero, so that next time we traverse the Tree from left to right and as we complete the traversal we set it’s value back to one. We will repeat this whole step until we have traversed the Binary Tree completely.
Below is the implementation of the above approach:
C++
// C++ program to print reverse // zigzag order of binary tree #include <bits/stdc++.h> using namespace std; // Binary tree node struct node { struct node* left; struct node* right; int data; }; // Function to create a new // Binary node struct node* newNode( int data) { struct node* temp = new node; temp->data = data; temp->left = NULL; temp->right = NULL; return temp; } // Recursive Function to find height // of binary tree int HeightOfTree( struct node* root) { if (root == NULL) return 0; // Compute the height of each subtree int lheight = HeightOfTree(root->left); int rheight = HeightOfTree(root->right); // Return the maximum of two return max(lheight + 1, rheight + 1); } // Function to Print nodes from right to left void Print_Level_Right_To_Left( struct node* root, int level) { if (root == NULL) return ; if (level == 1) cout << root->data << " " ; else if (level > 1) { Print_Level_Right_To_Left(root->right, level - 1); Print_Level_Right_To_Left(root->left, level - 1); } } // Function to Print nodes from left to right void Print_Level_Left_To_Right( struct node* root, int level) { if (root == NULL) return ; if (level == 1) cout << root->data << " " ; else if (level > 1) { Print_Level_Left_To_Right(root->left, level - 1); Print_Level_Left_To_Right(root->right, level - 1); } } // Function to print Reverse zigzag of // a Binary tree void PrintReverseZigZag( struct node* root) { // Flag is used to mark the change // in level int flag = 1; // Height of tree int height = HeightOfTree(root); for ( int i = height; i >= 1; i--) { // If flag value is one print nodes // from right to left if (flag == 1) { Print_Level_Right_To_Left(root, i); // Mark flag as zero so that next time // tree is traversed from left to right flag = 0; } // If flag is zero print nodes // from left to right else if (flag == 0) { Print_Level_Left_To_Right(root, i); // Mark flag as one so that next time // nodes are printed from right to left flag = 1; } } } // Driver code int main() { struct node* root = newNode(5); root->left = newNode(9); root->right = newNode(3); root->left->left = newNode(6); root->right->right = newNode(4); root->left->left->left = newNode(8); root->left->left->right = newNode(7); PrintReverseZigZag(root); return 0; } |
Java
// Java program to print reverse // zigzag order of binary tree class GfG { // Binary tree node static class node { node left; node right; int data; } // Function to create a new // Binary node static node newNode( int data) { node temp = new node(); temp.data = data; temp.left = null ; temp.right = null ; return temp; } // Recursive Function to find height // of binary tree static int HeightOfTree(node root) { if (root == null ) return 0 ; // Compute the height of each subtree int lheight = HeightOfTree(root.left); int rheight = HeightOfTree(root.right); // Return the maximum of two return Math.max(lheight + 1 , rheight + 1 ); } // Function to Print nodes from right to left static void Print_Level_Right_To_Left(node root, int level) { if (root == null ) return ; if (level == 1 ) System.out.print(root.data + " " ); else if (level > 1 ) { Print_Level_Right_To_Left(root.right, level - 1 ); Print_Level_Right_To_Left(root.left, level - 1 ); } } // Function to Print nodes from left to right static void Print_Level_Left_To_Right(node root, int level) { if (root == null ) return ; if (level == 1 ) System.out.print(root.data + " " ); else if (level > 1 ) { Print_Level_Left_To_Right(root.left, level - 1 ); Print_Level_Left_To_Right(root.right, level - 1 ); } } // Function to print Reverse zigzag of // a Binary tree static void PrintReverseZigZag(node root) { // Flag is used to mark the change // in level int flag = 1 ; // Height of tree int height = HeightOfTree(root); for ( int i = height; i >= 1 ; i--) { // If flag value is one print nodes // from right to left if (flag == 1 ) { Print_Level_Right_To_Left(root, i); // Mark flag as zero so that next time // tree is traversed from left to right flag = 0 ; } // If flag is zero print nodes // from left to right else if (flag == 0 ) { Print_Level_Left_To_Right(root, i); // Mark flag as one so that next time // nodes are printed from right to left flag = 1 ; } } } // Driver code public static void main(String[] args) { node root = newNode( 5 ); root.left = newNode( 9 ); root.right = newNode( 3 ); root.left.left = newNode( 6 ); root.right.right = newNode( 4 ); root.left.left.left = newNode( 8 ); root.left.left.right = newNode( 7 ); PrintReverseZigZag(root); } } // This code is contributed by Prerna Saini. |
Python3
# Python3 program to print reverse # zigzag order of binary tree # Binary tree node class Node: def __init__( self , data): self .data = data self .left = None self .right = None # Recursive Function to find # height of binary tree def HeightOfTree(root): if root = = None : return 0 # Compute the height of each subtree lheight = HeightOfTree(root.left) rheight = HeightOfTree(root.right) # Return the maximum of two return max (lheight + 1 , rheight + 1 ) # Function to Print nodes from right to left def Print_Level_Right_To_Left(root, level): if root = = None : return if level = = 1 : print (root.data, end = " " ) elif level > 1 : Print_Level_Right_To_Left(root.right, level - 1 ) Print_Level_Right_To_Left(root.left, level - 1 ) # Function to Print nodes from left to right def Print_Level_Left_To_Right(root, level): if root = = None : return if level = = 1 : print (root.data, end = " " ) elif level > 1 : Print_Level_Left_To_Right(root.left, level - 1 ) Print_Level_Left_To_Right(root.right, level - 1 ) # Function to print Reverse # zigzag of a Binary tree def PrintReverseZigZag(root): # Flag is used to mark the # change in level flag = 1 # Height of tree height = HeightOfTree(root) for i in range (height, 0 , - 1 ): # If flag value is one print # nodes from right to left if flag = = 1 : Print_Level_Right_To_Left(root, i) # Mark flag as zero so that next time # tree is traversed from left to right flag = 0 # If flag is zero print nodes # from left to right elif flag = = 0 : Print_Level_Left_To_Right(root, i) # Mark flag as one so that next time # nodes are printed from right to left flag = 1 # Driver code if __name__ = = "__main__" : root = Node( 5 ) root.left = Node( 9 ) root.right = Node( 3 ) root.left.left = Node( 6 ) root.right.right = Node( 4 ) root.left.left.left = Node( 8 ) root.left.left.right = Node( 7 ) PrintReverseZigZag(root) # This code is contributed by Rituraj Jain |
C#
// C# program to print reverse // zigzag order of binary tree using System; class GfG { // Binary tree node public class node { public node left; public node right; public int data; } // Function to create a new // Binary node static node newNode( int data) { node temp = new node(); temp.data = data; temp.left = null ; temp.right = null ; return temp; } // Recursive Function to find height // of binary tree static int HeightOfTree(node root) { if (root == null ) return 0; // Compute the height of each subtree int lheight = HeightOfTree(root.left); int rheight = HeightOfTree(root.right); // Return the maximum of two return Math.Max(lheight + 1, rheight + 1); } // Function to Print nodes from right to left static void Print_Level_Right_To_Left(node root, int level) { if (root == null ) return ; if (level == 1) Console.Write(root.data + " " ); else if (level > 1) { Print_Level_Right_To_Left(root.right, level - 1); Print_Level_Right_To_Left(root.left, level - 1); } } // Function to Print nodes from left to right static void Print_Level_Left_To_Right(node root, int level) { if (root == null ) return ; if (level == 1) Console.Write(root.data + " " ); else if (level > 1) { Print_Level_Left_To_Right(root.left, level - 1); Print_Level_Left_To_Right(root.right, level - 1); } } // Function to print Reverse zigzag of // a Binary tree static void PrintReverseZigZag(node root) { // Flag is used to mark the change // in level int flag = 1; // Height of tree int height = HeightOfTree(root); for ( int i = height; i >= 1; i--) { // If flag value is one print nodes // from right to left if (flag == 1) { Print_Level_Right_To_Left(root, i); // Mark flag as zero so that next time // tree is traversed from left to right flag = 0; } // If flag is zero print nodes // from left to right else if (flag == 0) { Print_Level_Left_To_Right(root, i); // Mark flag as one so that next time // nodes are printed from right to left flag = 1; } } } // Driver code public static void Main(String[] args) { node root = newNode(5); root.left = newNode(9); root.right = newNode(3); root.left.left = newNode(6); root.right.right = newNode(4); root.left.left.left = newNode(8); root.left.left.right = newNode(7); PrintReverseZigZag(root); } } /* This code contributed by PrinciRaj1992 */ |
Javascript
<script> // JavaScript program to print reverse // zigzag order of binary tree // Binary tree node class node { constructor(data) { this .left = null ; this .right = null ; this .data = data; } } // Function to create a new // Binary node function newNode(data) { let temp = new node(data); return temp; } // Recursive Function to find height // of binary tree function HeightOfTree(root) { if (root == null ) return 0; // Compute the height of each subtree let lheight = HeightOfTree(root.left); let rheight = HeightOfTree(root.right); // Return the maximum of two return Math.max(lheight + 1, rheight + 1); } // Function to Print nodes from right to left function Print_Level_Right_To_Left(root, level) { if (root == null ) return ; if (level == 1) document.write(root.data + " " ); else if (level > 1) { Print_Level_Right_To_Left(root.right, level - 1); Print_Level_Right_To_Left(root.left, level - 1); } } // Function to Print nodes from left to right function Print_Level_Left_To_Right(root, level) { if (root == null ) return ; if (level == 1) document.write(root.data + " " ); else if (level > 1) { Print_Level_Left_To_Right(root.left, level - 1); Print_Level_Left_To_Right(root.right, level - 1); } } // Function to print Reverse zigzag of // a Binary tree function PrintReverseZigZag(root) { // Flag is used to mark the change // in level let flag = 1; // Height of tree let height = HeightOfTree(root); for (let i = height; i >= 1; i--) { // If flag value is one print nodes // from right to left if (flag == 1) { Print_Level_Right_To_Left(root, i); // Mark flag as zero so that next time // tree is traversed from left to right flag = 0; } // If flag is zero print nodes // from left to right else if (flag == 0) { Print_Level_Left_To_Right(root, i); // Mark flag as one so that next time // nodes are printed from right to left flag = 1; } } } let root = newNode(5); root.left = newNode(9); root.right = newNode(3); root.left.left = newNode(6); root.right.right = newNode(4); root.left.left.left = newNode(8); root.left.left.right = newNode(7); PrintReverseZigZag(root); </script> |
7 8 6 4 3 9 5
Time Complexity:O(N^2), where N is the number of nodes in a binary tree.
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!