Given a rectangle of length l & breadth b, we have to find the largest circle that can be inscribed in the rectangle.
Examples:
Input : l = 4, b = 8 Output : 12.56 Input : l = 16 b = 6 Output : 28.26
From the figure, we can see, the biggest circle that could be inscribed in the rectangle will have radius always equal to the half of the shorter side of the rectangle. So from the figure,
radius, r = b/2 &
Area, A = ? * (r^2)
C++
// C++ Program to find the biggest circle // which can be inscribed within the rectangle #include <bits/stdc++.h> using namespace std; // Function to find the area // of the biggest circle float circlearea( float l, float b) { // the length and breadth cannot be negative if (l < 0 || b < 0) return -1; // area of the circle if (l < b) return 3.14 * pow (l / 2, 2); else return 3.14 * pow (b / 2, 2); } // Driver code int main() { float l = 4, b = 8; cout << circlearea(l, b) << endl; return 0; } |
Java
// Java Program to find the // biggest circle which can be // inscribed within the rectangle class GFG { // Function to find the area // of the biggest circle static float circlearea( float l, float b) { // the length and breadth // cannot be negative if (l < 0 || b < 0 ) return - 1 ; // area of the circle if (l < b) return ( float )( 3.14 * Math.pow(l / 2 , 2 )); else return ( float )( 3.14 * Math.pow(b / 2 , 2 )); } // Driver code public static void main(String[] args) { float l = 4 , b = 8 ; System.out.println(circlearea(l, b)); } } // This code is contributed // by ChitraNayal |
Python 3
# Python 3 Program to find the # biggest circle which can be # inscribed within the rectangle # Function to find the area # of the biggest circle def circlearea(l, b): # the length and breadth # cannot be negative if (l < 0 or b < 0 ): return - 1 # area of the circle if (l < b): return 3.14 * pow (l / / 2 , 2 ) else : return 3.14 * pow (b / / 2 , 2 ) # Driver code if __name__ = = "__main__" : l = 4 b = 8 print (circlearea(l, b)) # This code is contributed # by ChitraNayal |
C#
// C# Program to find the // biggest circle which can be // inscribed within the rectangle using System; class GFG { // Function to find the area // of the biggest circle static float circlearea( float l, float b) { // the length and breadth // cannot be negative if (l < 0 || b < 0) return -1; // area of the circle if (l < b) return ( float )(3.14 * Math.Pow(l / 2, 2)); else return ( float )(3.14 * Math.Pow(b / 2, 2)); } // Driver code public static void Main() { float l = 4, b = 8; Console.Write(circlearea(l, b)); } } // This code is contributed // by ChitraNayal |
PHP
<?php // PHP Program to find the // biggest circle which can be // inscribed within the rectangle // Function to find the area // of the biggest circle function circlearea( $l , $b ) { // the length and breadth // cannot be negative if ( $l < 0 || $b < 0) return -1; // area of the circle if ( $l < $b ) return 3.14 * pow( $l / 2, 2); else return 3.14 * pow( $b / 2, 2); } // Driver code $l = 4; $b = 8; echo circlearea( $l , $b ). "\n" ; // This code is contributed // by ChitraNayal ?> |
Javascript
<script> // javascript Program to find the // biggest circle which can be // inscribed within the rectangle // Function to find the area // of the biggest circle function circlearea(l, b) { // the length and breadth // cannot be negative if (l < 0 || b < 0) return -1; // area of the circle if (l < b) return (3.14 * Math.pow(l / 2, 2)); else return (3.14 * Math.pow(b / 2, 2)); } // Driver code var l = 4, b = 8; document.write(circlearea(l, b)); // This code is contributed by Amit Katiyar </script> |
12.56
Time complexity: O(1) as it is doing constant operations
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!