Saturday, December 28, 2024
Google search engine
HomeData Modelling & AINumber of non-decreasing sub-arrays of length K

Number of non-decreasing sub-arrays of length K

Given an array arr[] of length N, the task is to find the number of non-decreasing sub-arrays of length K.
Examples: 
 

Input: arr[] = {1, 2, 3, 2, 5}, K = 2 
Output:
{1, 2}, {2, 3} and {2, 5} are the increasing 
subarrays of length 2.
Input: arr[] = {1, 2, 3, 2, 5}, K = 1 
Output:
 

 

Naive approach Generate all the sub-arrays of length K and then check whether the sub-array satisfies the condition. Thus, the time complexity of the approach will be O(N * K).
Better approach: A better approach will be using two-pointer technique. Let’s say the current index is i
 

  • Find the largest index j, such that the sub-array arr[i…j] is non-decreasing. This can be achieved by simply incrementing the value of j starting from i + 1 and checking whether arr[j] is greater than arr[j – 1].
  • Let’s say the length of the sub-array found in the previous step is L. The number of sub-arrays of length K contained in it will be max(L – K + 1, 0).
  • Now, update i = j and repeat the above steps while i is in the index range.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of
// increasing subarrays of length k
int cntSubArrays(int* arr, int n, int k)
{
    // To store the final result
    int res = 0;
 
    int i = 0;
    // Two pointer loop
    while (i < n) {
 
        // Initialising j
        int j = i + 1;
 
        // Looping till the subarray increases
        while (j < n and arr[j] >= arr[j - 1])
            j++;
 
        // Updating the required count
        res += max(j - i - k + 1, 0);
 
        // Updating i
        i = j;
    }
 
    // Returning res
    return res;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2, 3, 2, 5 };
    int n = sizeof(arr) / sizeof(int);
    int k = 2;
 
    cout << cntSubArrays(arr, n, k);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
 
// Function to return the count of
// increasing subarrays of length k
static int cntSubArrays(int []arr, int n, int k)
{
    // To store the final result
    int res = 0;
 
    int i = 0;
     
    // Two pointer loop
    while (i < n)
    {
 
        // Initialising j
        int j = i + 1;
 
        // Looping till the subarray increases
        while (j < n && arr[j] >= arr[j - 1])
            j++;
 
        // Updating the required count
        res += Math.max(j - i - k + 1, 0);
 
        // Updating i
        i = j;
    }
 
    // Returning res
    return res;
}
 
// Driver code
public static void main(String []args)
{
    int arr[] = { 1, 2, 3, 2, 5 };
    int n = arr.length;
    int k = 2;
 
    System.out.println(cntSubArrays(arr, n, k));
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python3 implementation of the approach
 
# Function to return the count of
# increasing subarrays of length k
def cntSubArrays(arr, n, k) :
 
    # To store the final result
    res = 0;
 
    i = 0;
     
    # Two pointer loop
    while (i < n) :
 
        # Initialising j
        j = i + 1;
 
        # Looping till the subarray increases
        while (j < n and arr[j] >= arr[j - 1]) :
            j += 1;
 
        # Updating the required count
        res += max(j - i - k + 1, 0);
 
        # Updating i
        i = j;
 
    # Returning res
    return res;
 
# Driver code
if __name__ == "__main__" :
     
    arr = [ 1, 2, 3, 2, 5 ];
    n = len(arr);
    k = 2;
 
    print(cntSubArrays(arr, n, k));
     
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
     
class GFG
{
 
// Function to return the count of
// increasing subarrays of length k
static int cntSubArrays(int []arr, int n, int k)
{
    // To store the final result
    int res = 0;
 
    int i = 0;
     
    // Two pointer loop
    while (i < n)
    {
 
        // Initialising j
        int j = i + 1;
 
        // Looping till the subarray increases
        while (j < n && arr[j] >= arr[j - 1])
            j++;
 
        // Updating the required count
        res += Math.Max(j - i - k + 1, 0);
 
        // Updating i
        i = j;
    }
 
    // Returning res
    return res;
}
 
// Driver code
public static void Main(String []args)
{
    int []arr = { 1, 2, 3, 2, 5 };
    int n = arr.Length;
    int k = 2;
 
    Console.WriteLine(cntSubArrays(arr, n, k));
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the count of
// increasing subarrays of length k
function cntSubArrays(arr, n, k)
{
    // To store the final result
    var res = 0;
 
    var i = 0;
    // Two pointer loop
    while (i < n) {
 
        // Initialising j
        var j = i + 1;
 
        // Looping till the subarray increases
        while (j < n && arr[j] >= arr[j - 1])
            j++;
 
        // Updating the required count
        res += Math.max(j - i - k + 1, 0);
 
        // Updating i
        i = j;
    }
 
    // Returning res
    return res;
}
 
// Driver code
var arr = [ 1, 2, 3, 2, 5 ];
var n = arr.length;
var k = 2;
document.write( cntSubArrays(arr, n, k));
 
</script>


Output: 

3

 

Time Complexity: O(n)
Auxiliary Space: O(1) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments