Monday, November 18, 2024
Google search engine

Aliquot sum

In number theory, the aliquot sum s(n) of a positive integer n is the sum of all proper divisors of n, that is, all divisors of n other than n itself.
They are defined by the sums of their aliquot divisors. The aliquot divisors of a number are all of its divisors except the number itself. The aliquot sum is the sum of the aliquot divisors so, for example, the aliquot divisors of 12 are 1, 2, 3, 4, and 6 and it’s aliquot sum is 16.
A number whose aliquot sum equals its value is a PERFECT number (6 for example).
Examples : 
 

Input : 12
Output : 16
Explanation :
Proper divisors of 12 is = 1, 2, 3, 4, 6 
and sum 1 + 2 + 3 + 4 + 6 = 16

Input : 15
Output : 9
Explanation :
Proper divisors of 15 is 1, 3, 5
and sum 1 + 3 + 5 = 9

 

A simple solution is to traverse through all numbers smaller than n. For every number i, check if i divides n. If yes, we add it to result. 
 

C++




// CPP program for aliquot sum
#include <iostream>
using namespace std;
 
// Function to calculate sum of
// all proper divisors
int aliquotSum(int n)
{
    int sum = 0;
    for (int i = 1; i < n; i++)
        if (n % i == 0)
            sum += i;       
     
    return sum;
}
 
// Driver Code
int main()
{
    int n = 12;
    cout << aliquotSum(n);
    return 0;
}


Java




// Java program for aliquot sum
import java.io.*;
 
class GFG {
     
    // Function to calculate sum of
    // all proper divisors
    static int aliquotSum(int n)
    {
        int sum = 0;
        for (int i = 1; i < n; i++)
            if (n % i == 0)
                sum += i;
                 
        return sum;
    }
     
    // Driver Code
    public static void main(String args[])
                           throws IOException
    {
        int n = 12;
        System.out.println(aliquotSum(n));
    }
}
 
/* This code is contributed by Nikita Tiwari.*/


Python3




# Python 3 program for aliquot sum
 
# Function to calculate sum of
# all proper divisors
def aliquotSum(n) :
    sm = 0
    for i in range(1,n) :
        if (n % i == 0) :
            sm = sm + i    
     
    return sm # return sum
 
 
# Driver Code
n = 12
print(aliquotSum(n))
 
# This code is contributed by Nikita Tiwari.


C#




// C# program for aliquot sum
using System;
 
class GFG {
     
    // Function to calculate sum of
    // all proper divisors
    static int aliquotSum(int n)
    {
        int sum = 0;
        for (int i = 1; i < n; i++)
            if (n % i == 0)
                sum += i;
                 
        return sum;
    }
     
    // Driver Code
    public static void Main()
                         
    {
        int n = 12;
        Console.WriteLine(aliquotSum(n));
    }
}
 
/* This code is contributed by vt_m.*/


PHP




<?php
// PHP program for aliquot sum
 
// Function to calculate sum of
// all proper divisors
function aliquotSum($n)
{
    $sum = 0;
    for ($i = 1; $i < $n; $i++)
        if ($n % $i == 0)
            $sum += $i;    
     
    return $sum;
}
 
// Driver Code
$n = 12;
echo(aliquotSum($n));
 
// This code is contributed by Ajit.
?>


Javascript




<script>
 
// JavaScript program for aliquot sum
 
// Function to calculate sum of
// all proper divisors
    function aliquotSum(n)
    {
        let sum = 0;
        for (let i = 1; i < n; i++)
            if (n % i == 0)
                sum += i;
                   
        return sum;
    }
       
 
// Driver code
         
        let n = 12;
        document.write(aliquotSum(n));
         
</script>


Output : 

16

Time Complexity: O(n) 
Auxiliary Space: O(1)

Efficient Solutions : 
Sum of all proper divisors of a natural number 
Sum of all the factors of a number
 

Please suggest if someone has a better solution which is more efficient in terms of space and time.
This article is contributed by Aarti_Rathi. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments