Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICount of subsets having sum of min and max element less than...

Count of subsets having sum of min and max element less than K

Given an integer array arr[] and an integer K, the task is to find the number of non-empty subsets S such that min(S) + max(S) < K.
Examples: 
 

Input: arr[] = {2, 4, 5, 7} K = 8 
Output: 4 
Explanation: 
The possible subsets are {2}, {2, 4}, {2, 4, 5} and {2, 5}
Input:: arr[] = {2, 4, 2, 5, 7} K = 10 
Output: 26 
 

 

Approach 

  • Sort the input array first.
  • Now use Two Pointer Technique to count the number of subsets.
  • Let take two pointers left and right and set left = 0 and right = N-1.

if (arr[left] + arr[right] < K ) 
Increment the left pointer by 1 and add 2 j – i into answer, because the left and right values make up a potential end values of a subset. All the values from [i, j – 1] also make up end of subsets which will have the sum < K. So, we need to calculate all the possible subsets for left = i and right ? [i, j]. So, after summing up values 2 j – i + 1 + 2 j – i – 2 + … + 2 0 of the GP, we get 2 j – i
if( arr[left] + arr[right] >= K ) 
Decrement the right pointer by 1. 
 

  • Repeat the below process until left <= right.

Below is the implementation of the above approach:

C++




// C++ program to print count
// of subsets S such that
// min(S) + max(S) < K
 
#include <bits/stdc++.h>
using namespace std;
 
// Function that return the
// count of subset such that
// min(S) + max(S) < K
int get_subset_count(int arr[], int K,
                     int N)
{
    // Sorting the array
    sort(arr, arr + N);
 
    int left, right;
    left = 0;
    right = N - 1;
 
    // ans stores total number of subsets
    int ans = 0;
 
    while (left <= right) {
        if (arr[left] + arr[right] < K) {
 
            // add all possible subsets
            // between i and j
            ans += 1 << (right - left);
            left++;
        }
        else {
            // Decrease the sum
            right--;
        }
    }
    return ans;
}
 
// Driver code
int main()
{
    int arr[] = { 2, 4, 5, 7 };
    int K = 8;
    int N = sizeof(arr) / sizeof(arr[0]);
    cout << get_subset_count(arr, K, N);
    return 0;
}


Java




// Java program to print count
// of subsets S such that
// Math.min(S) + Math.max(S) < K
import java.util.*;
 
class GFG{
 
// Function that return the
// count of subset such that
// Math.min(S) + Math.max(S) < K
static int get_subset_count(int arr[], int K,
                                       int N)
{
     
    // Sorting the array
    Arrays.sort(arr);
 
    int left, right;
    left = 0;
    right = N - 1;
 
    // ans stores total number
    // of subsets
    int ans = 0;
 
    while (left <= right)
    {
        if (arr[left] + arr[right] < K)
        {
 
            // Add all possible subsets
            // between i and j
            ans += 1 << (right - left);
            left++;
        }
        else
        {
             
            // Decrease the sum
            right--;
        }
    }
    return ans;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 2, 4, 5, 7 };
    int K = 8;
    int N = arr.length;
     
    System.out.print(get_subset_count(arr, K, N));
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 program to print
# count of subsets S such
# that min(S) + max(S) < K
 
# Function that return the
# count of subset such that
# min(S) + max(S) < K
def get_subset_count(arr, K, N):
 
    # Sorting the array
    arr.sort()
 
    left = 0;
    right = N - 1;
 
    # ans stores total number of subsets
    ans = 0;
 
    while (left <= right):
        if (arr[left] + arr[right] < K):
             
            # Add all possible subsets
            # between i and j
            ans += 1 << (right - left);
            left += 1;
        else:
             
            # Decrease the sum
            right -= 1;
     
    return ans;
 
# Driver code
arr = [ 2, 4, 5, 7 ];
K = 8;
 
print(get_subset_count(arr, K, 4))
 
# This code is contributed by grand_master


C#




// C# program to print count
// of subsets S such that
// Math.Min(S) + Math.Max(S) < K
using System;
 
class GFG{
 
// Function that return the
// count of subset such that
// Math.Min(S) + Math.Max(S) < K
static int get_subset_count(int []arr, int K,
                                       int N)
{
     
    // Sorting the array
    Array.Sort(arr);
 
    int left, right;
    left = 0;
    right = N - 1;
 
    // ans stores total number
    // of subsets
    int ans = 0;
 
    while (left <= right)
    {
        if (arr[left] + arr[right] < K)
        {
             
            // Add all possible subsets
            // between i and j
            ans += 1 << (right - left);
            left++;
        }
        else
        {
             
            // Decrease the sum
            right--;
        }
    }
    return ans;
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 2, 4, 5, 7 };
    int K = 8;
    int N = arr.Length;
     
    Console.Write(get_subset_count(arr, K, N));
}
}
 
// This code is contributed by gauravrajput1


Javascript




<script>
 
// JavaScript program to print count
// of subsets S such that
// Math.min(S) + Math.max(S) < K
 
// Function that return the
// count of subset such that
// Math.min(S) + Math.max(S) < K
function get_subset_count(arr,K,N)
{
    // Sorting the array
    (arr).sort(function(a,b){return a-b;});
  
    let left, right;
    left = 0;
    right = N - 1;
  
    // ans stores total number
    // of subsets
    let ans = 0;
  
    while (left <= right)
    {
        if (arr[left] + arr[right] < K)
        {
  
            // Add all possible subsets
            // between i and j
            ans += 1 << (right - left);
            left++;
        }
        else
        {
              
            // Decrease the sum
            right--;
        }
    }
    return ans;
}
 
// Driver code
let arr=[ 2, 4, 5, 7];
let K = 8;
let N = arr.length;
document.write(get_subset_count(arr, K, N));
 
 
// This code is contributed by patel2127
 
</script>


Output: 

4

 

Time Complexity: O(N* log N) 
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments