Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIFind the subsequence with given sum in a superincreasing sequence

Find the subsequence with given sum in a superincreasing sequence

A sequence of positive real numbers S1, S2, S3, …, SN is called a superincreasing sequence if every element of the sequence is greater than the sum of all the previous elements in the sequence. For example, 1, 3, 6, 13, 27, 52 is such subsequence. 
Now, given a superincreasing sequence S and the sum of a subsequence of this sequence, the task is to find the subsequence.

Examples: 

Input: S[] = {17, 25, 46, 94, 201, 400}, sum = 272 
Output: 25 46 201 
25 + 46 + 201 = 272

Input: S[] = {1, 2, 4, 8, 16}, sum = 12 
Output: 4 8 

Brute Force Approach :

  • Generate all possible subsequences of the array
  • For each subsequence, check if the sum of its elements is equal to the given sum
  • Return the subsequence that satisfies the condition, or null if no such subsequence exists

Below is the implementation of the above approach: 

C++




#include <bits/stdc++.h>
using namespace std;
 
void findSubSeq(int arr[], int n, int sum)
{
    // Generate all possible subsequences
    for (int i = 0; i < (1 << n); i++) {
        vector<int> subSeq;
        for (int j = 0; j < n; j++) {
            // Check if the jth element of the array is
            // included in the current subsequence
            if (i & (1 << j)) {
                subSeq.push_back(
                    arr[j]); // Add the jth element to the
                             // current subsequence
            }
        }
        // Check if the sum of the current subsequence
        // equals to the given sum
        int currentSum
            = accumulate(subSeq.begin(), subSeq.end(),
                         0); // Calculate the sum of the
                             // current subsequence
        if (currentSum == sum) { // If the sum is equal to
                                 // the given sum, print the
                                 // subsequence and return
            for (int k = 0; k < subSeq.size(); k++) {
                cout << subSeq[k] << " ";
            }
            return;
        }
    }
    // No subsequence found
    cout << "null";
}
 
int main()
{
    int arr[] = { 17, 25, 46, 94, 201, 400 };
    int n = sizeof(arr) / sizeof(int);
    int sum = 272;
 
    findSubSeq(arr, n, sum); // Find a subsequence of the
                             // array with the given sum
 
    return 0;
}


Java




// Java code of above approach
import java.io.*;
import java.util.*;
 
public class Main {
 
    public static void findSubSeq(int[] arr, int n, int sum)
    {
        // Generate all possible subsequences
        for (int i = 0; i < (1 << n); i++) {
            List<Integer> subSeq = new ArrayList<>();
            for (int j = 0; j < n; j++) {
                // Check if the jth element of the array is
                // included in the current subsequence
                if ((i & (1 << j)) != 0) {
                    subSeq.add(
                        arr[j]); // Add the jth element to
                                 // the current subsequence
                }
            }
            // Check if the sum of the current subsequence
            // equals to the given sum
            int currentSum = 0;
            for (int k = 0; k < subSeq.size(); k++) {
                currentSum += subSeq.get(k);
            }
            if (currentSum
                == sum) { // If the sum is equal to the
                          // given sum, print the
                          // subsequence and return
                for (int k = 0; k < subSeq.size(); k++) {
                    System.out.print(subSeq.get(k) + " ");
                }
                return;
            }
        }
        // No subsequence found
        System.out.println("null");
    }
 
    public static void main(String[] args)
    {
        int[] arr = { 17, 25, 46, 94, 201, 400 };
        int n = arr.length;
        int sum = 272;
 
        findSubSeq(arr, n,
                   sum); // Find a subsequence of the array
                         // with the given sum
    }
}


Python3




def findSubSeq(arr, n, summ):
    # Generate all possible subsequences
    for i in range(1 << n):
        subSeq = []
        for j in range(n):
            # Check if the jth element of the array is included in the current subsequence
            if (i & (1 << j)) != 0:
                # Add the jth element to the current subsequence
                subSeq.append(arr[j])
        # Check if the sum of the current subsequence equals to the given sum
        currentSum = sum(subSeq)
        if currentSum == summ:  # If the sum is equal to the given sum, print the subsequence and return
            print(subSeq)
            return
    # No subsequence found
    print("null")
 
 
arr = [17, 25, 46, 94, 201, 400]
n = len(arr)
summ = 272
 
findSubSeq(arr, n, summ)  # Find a subsequence of the array with the given sum


C#




using System;
using System.Collections.Generic;
using System.Linq;
 
class Program
{
    static void FindSubsequence(int[] arr, int sum)
    {
        int n = arr.Length;
        // Generate all possible subsequences
        for (int i = 0; i < (1 << n); i++)
        {
            List<int> subSeq = new List<int>();
            for (int j = 0; j < n; j++)
            {
                // Check if the jth element of the array is
                // included in the current subsequence
                if ((i & (1 << j)) != 0)
                {
                    subSeq.Add(arr[j]); // Add the jth element to the current subsequence
                }
            }
            // Check if the sum of the current subsequence
            // equals the given sum
            int currentSum = subSeq.Sum(); // Calculate the sum of the current subsequence
            if (currentSum == sum)
            {
                // If the sum is equal to the given sum, print the subsequence and return
                Console.WriteLine(string.Join(" ", subSeq));
                return;
            }
        }
        // No subsequence found
        Console.WriteLine("null");
    }
 
    static void Main()
    {
        int[] arr = { 17, 25, 46, 94, 201, 400 };
        int sum = 272;
 
        FindSubsequence(arr, sum); // Find a subsequence of the array with the given sum
    }
}


Javascript




function findSubSeq(arr, n, summ) {
// Generate all possible subsequences
for (let i = 0; i < (1 << n); i++) {
let subSeq = [];
for (let j = 0; j < n; j++) {
// Check if the jth element of the array is included in the current subsequence
if ((i & (1 << j)) !== 0) {
subSeq.push(arr[j]); // Add the jth element to the current subsequence
}
}
// Check if the sum of the current subsequence equals to the given sum
let currentSum = subSeq.reduce((a, b) => a + b, 0);
if (currentSum === summ) { // If the sum is equal to the given sum, print the subsequence and return
console.log(subSeq);
return;
}
}
// No subsequence found
console.log("null");
}
 
let arr = [17, 25, 46, 94, 201, 400];
let n = arr.length;
let summ = 272;
 
findSubSeq(arr, n, summ); // Find a subsequence of the array with the given sum


Output

25 46 201 

Time complexity :  O(2^n * n)
Auxiliary Space :  O(2^n * n)

Approach: This problem can be solved using the greedy technique. Starting from the last element of the array till the first element, there are two cases: 

  1. sum < arr[i]: In this case, the current element cannot be a part of the required subsequence as after including it, the sum of the subsequence will exceed the given sum. So discard the current element.
  2. sum ? arr[i]: In this case, the current element has to be included in the required subsequence. This is because if the current element is not included then the sum of the previous elements in the array will be smaller than the current element (as it is a superincreasing sequence) which will in turn be smaller than the required sum. So take the current element and update the sum as sum = sum – arr[i].

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the required subsequence
void findSubSeq(int arr[], int n, int sum)
{
 
    for (int i = n - 1; i >= 0; i--) {
 
        // Current element cannot be a part
        // of the required subsequence
        if (sum < arr[i])
            arr[i] = -1;
 
        // Include current element in
        // the required subsequence
        // So update the sum
        else
            sum -= arr[i];
    }
 
    // Print the elements of the
    // required subsequence
    for (int i = 0; i < n; i++) {
 
        // If the current element was
        // included in the subsequence
        if (arr[i] != -1)
            cout << arr[i] << " ";
    }
}
 
// Driver code
int main()
{
    int arr[] = { 17, 25, 46, 94, 201, 400 };
    int n = sizeof(arr) / sizeof(int);
    int sum = 272;
 
    findSubSeq(arr, n, sum);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
     
    // Function to find the required subsequence
    static void findSubSeq(int arr[], int n, int sum)
    {
        for (int i = n - 1; i >= 0; i--)
        {
     
            // Current element cannot be a part
            // of the required subsequence
            if (sum < arr[i])
                arr[i] = -1;
     
            // Include current element in
            // the required subsequence
            // So update the sum
            else
                sum -= arr[i];
        }
     
        // Print the elements of the
        // required subsequence
        for (int i = 0; i < n; i++)
        {
     
            // If the current element was
            // included in the subsequence
            if (arr[i] != -1)
                System.out.print(arr[i] + " ");
        }
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int arr[] = { 17, 25, 46, 94, 201, 400 };
        int n = arr.length;
        int sum = 272;
     
        findSubSeq(arr, n, sum);
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the approach
 
# Function to find the required subsequence
def findSubSeq(arr, n, sum) :
 
    for i in range(n - 1, -1, -1) :
 
        # Current element cannot be a part
        # of the required subsequence
        if (sum < arr[i]) :
            arr[i] = -1;
 
        # Include current element in
        # the required subsequence
        # So update the sum
        else :
            sum -= arr[i];
 
    # Print the elements of the
    # required subsequence
    for i in range(n) :
 
        # If the current element was
        # included in the subsequence
        if (arr[i] != -1) :
            print(arr[i], end = " ");
 
# Driver code
if __name__ == "__main__" :
 
    arr = [ 17, 25, 46, 94, 201, 400 ];
    n = len(arr);
    sum = 272;
 
    findSubSeq(arr, n, sum);
 
# This code is contributed by kanugargng


C#




// C# implementation of the approach
using System;
     
class GFG
{
     
    // Function to find the required subsequence
    static void findSubSeq(int []arr,
                           int n, int sum)
    {
        for (int i = n - 1; i >= 0; i--)
        {
     
            // Current element cannot be a part
            // of the required subsequence
            if (sum < arr[i])
                arr[i] = -1;
     
            // Include current element in
            // the required subsequence
            // So update the sum
            else
                sum -= arr[i];
        }
     
        // Print the elements of the
        // required subsequence
        for (int i = 0; i < n; i++)
        {
     
            // If the current element was
            // included in the subsequence
            if (arr[i] != -1)
                Console.Write(arr[i] + " ");
        }
    }
     
    // Driver code
    public static void Main (String[] args)
    {
        int []arr = { 17, 25, 46, 94, 201, 400 };
        int n = arr.Length;
        int sum = 272;
     
        findSubSeq(arr, n, sum);
    }
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
// Javascript implementation of the approach
 
 
// Function to find the required subsequence
function findSubSeq(arr, n, sum) {
 
    for (let i = n - 1; i >= 0; i--) {
 
        // Current element cannot be a part
        // of the required subsequence
        if (sum < arr[i])
            arr[i] = -1;
 
        // Include current element in
        // the required subsequence
        // So update the sum
        else
            sum -= arr[i];
    }
 
    // Print the elements of the
    // required subsequence
    for (let i = 0; i < n; i++) {
 
        // If the current element was
        // included in the subsequence
        if (arr[i] != -1)
            document.write(arr[i] + " ");
    }
}
 
// Driver code
 
let arr = [17, 25, 46, 94, 201, 400];
let n = arr.length;
let sum = 272;
 
findSubSeq(arr, n, sum);
 
// This code is contributed by gfgking.
</script>


Output

25 46 201

Time Complexity: O(n), where n is the size of the given array.
Auxiliary Space: O(1), no extra space is required, so it is a constant.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments