Friday, January 10, 2025
Google search engine
HomeData Modelling & AIMaximize GCD of all possible pairs from 1 to N

Maximize GCD of all possible pairs from 1 to N

Given an integer N (> 2), the task is to find the maximum GCD among all pairs possible by the integers in the range [1, N].

Example: 

Input: N = 5 
Output:
Explanation : 
GCD(1, 2) : 1 
GCD(1, 3) : 1 
GCD(1, 4) : 1 
GCD(1, 5) : 1 
GCD(2, 3) : 1 
GCD(2, 4) : 2 
GCD(2, 5) : 1 
GCD(3, 4) : 1 
GCD(3, 5) : 1 
GCD(4, 5) : 1

Input: N = 6 
Output:
Explanation: GCD of pair (3, 6) is the maximum. 
 

Naive Approach: 
The simplest approach to solve the problem is to generate all possible pairs from [1, N] and calculate GCD of each pair. Finally, print the maximum GCD obtained. 
Time Complexity: O(N2logN) 
Auxiliary Space: O(1) 

Efficient Approach: 
Follow the steps below to solve the problem:  

  • Since all the pairs are distinct, then, for any pair {a, b} with GCD g, either of a or b is greater than g.
  • Considering b to be the greater number, b > 2g, since 2g is the smallest multiple of g greater than it.
  • Since b cannot exceed N, and 2g <= N.
  • Therefore, g = floor(n/2).
  • Therefore, the maximum GCD that can be obtained is floor(n/2), when pair chosen is (floor(n/2), 2*floor(n/2)). 

Illustration: 
N = 6 
Maximum GCD = 6/2 = 3, occurs for the pair (3, 6) 
 

Below is the implementation of the above approach: 

C++




// C++ Program to implement
// the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to obtain the maximum
// gcd of all pairs from 1 to n
void find(int n)
{
    // Print the answer
    cout << n / 2 << endl;
}
 
// Driver code
int main()
{
    int n = 5;
    // Function call
    find(n);
    return 0;
}


Java




// Java Program to implement
// the approach
class GFG{
   
// Function to obtain the maximum
// gcd of all pairs from 1 to n
static void find(int n)
{
    // Print the answer
    System.out.println(n / 2);
}
  
// Driver code
public static void main(String[] args)
{
    int n = 5;
    // Function call
    find(n);
}
}
 
// This code is contributed by Ritik Bansal


Python3




# Python3 program to implement
# the approach
 
# Function to obtain the maximum
# gcd of all pairs from 1 to n
def find(n):
 
    # Print the answer
    print(n // 2)
 
# Driver Code
if __name__ == '__main__':
 
    # Given n
    n = 5
 
    # Function call
    find(n)
 
# This code is contributed by Shivam Singh


C#




// C# Program to implement
// the approach
using System;
class GFG{
    
// Function to obtain the maximum
// gcd of all pairs from 1 to n
static void find(int n)
{
    // Print the answer
    Console.Write(n / 2);
}
   
// Driver code
public static void Main(string[] args)
{
    int n = 5;
    // Function call
    find(n);
}
}
  
// This code is contributed by rock_cool


Javascript




<script>
 
// Javascript program to implement
// the approach
 
// Function to obtain the maximum
// gcd of all pairs from 1 to n
function find(n)
{
     
    // Print the answer
    document.write(parseInt(n / 2, 10) + "</br>");
}
 
// Driver code
let n = 5;
 
// Function call
find(n);
 
// This code is contributed by divyeshrabadiya07
 
</script>


Output: 

2

 

Time Complexity: O(1) 
Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments