, Given an array arr[] of N integers. The task is to find the largest elements in the first half and the second half of the array. Note that if the size of the array is odd then the middle element will be included in both halves.
Examples:
Input: arr[] = {1, 12, 14, 5}
Output: 12, 14
First half is {1, 12} and the second half is {14, 5}.
Input: arr[] = {1, 2, 3, 4, 5}
Output: 3, 5
Approach: Calculate the middle index of the array as mid = N / 2. Now the first halve elements will be present in the subarray arr[0…mid-1] and arr[mid…N-1] if N is even.
If N is odd then the halves are arr[0…mid] and arr[mid…N-1]
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to print largest element in // first half and second half of an array void findMax( int arr[], int n) { // To store the maximum element // in the first half int maxFirst = INT_MIN; // Middle index of the array int mid = n / 2; // Calculate the maximum element // in the first half for ( int i = 0; i < mid; i++) maxFirst = max(maxFirst, arr[i]); // If the size of array is odd then // the middle element will be included // in both the halves if (n % 2 == 1) maxFirst = max(maxFirst, arr[mid]); // To store the maximum element // in the second half int maxSecond = INT_MIN; // Calculate the maximum element // int the second half for ( int i = mid; i < n; i++) maxSecond = max(maxSecond, arr[i]); // Print the found maximums cout << maxFirst << ", " << maxSecond; } // Driver code int main() { int arr[] = { 1, 12, 14, 5 }; int n = sizeof (arr) / sizeof (arr[0]); findMax(arr, n); return 0; } |
Java
// Java implementation of the approach import java.io.*; class GFG { static void findMax( int []arr, int n) { // To store the maximum element // in the first half int maxFirst = Integer.MIN_VALUE; // Middle index of the array int mid = n / 2 ; // Calculate the maximum element // in the first half for ( int i = 0 ; i < mid; i++) { maxFirst = Math.max(maxFirst, arr[i]); } // If the size of array is odd then // the middle element will be included // in both the halves if (n % 2 == 1 ) { maxFirst = Math.max(maxFirst, arr[mid]); } // To store the maximum element // in the second half int maxSecond = Integer.MIN_VALUE; // Calculate the maximum element // int the second half for ( int i = mid; i < n; i++) { maxSecond = Math.max(maxSecond, arr[i]); } // Print the found maximums System.out.print(maxFirst + ", " + maxSecond); // cout << maxFirst << ", " << maxSecond; } // Driver Code public static void main(String[] args) { int []arr = { 1 , 12 , 14 , 5 }; int n = arr.length; findMax(arr, n); } } // This code is contributed by anuj_67.. |
Python3
# Python3 implementation of the approach import sys # Function to print largest element in # first half and second half of an array def findMax(arr, n) : # To store the maximum element # in the first half maxFirst = - sys.maxsize - 1 # Middle index of the array mid = n / / 2 ; # Calculate the maximum element # in the first half for i in range ( 0 , mid): maxFirst = max (maxFirst, arr[i]) # If the size of array is odd then # the middle element will be included # in both the halves if (n % 2 = = 1 ): maxFirst = max (maxFirst, arr[mid]) # To store the maximum element # in the second half maxSecond = - sys.maxsize - 1 # Calculate the maximum element # int the second half for i in range (mid, n): maxSecond = max (maxSecond, arr[i]) # Print the found maximums print (maxFirst, "," , maxSecond) # Driver code arr = [ 1 , 12 , 14 , 5 ] n = len (arr) findMax(arr, n) # This code is contributed by ihritik |
C#
// C# implementation of the approach using System; class GFG { static void findMax( int []arr, int n) { // To store the maximum element // in the first half int maxFirst = int .MinValue; // Middle index of the array int mid = n / 2; // Calculate the maximum element // in the first half for ( int i = 0; i < mid; i++) { maxFirst = Math.Max(maxFirst, arr[i]); } // If the size of array is odd then // the middle element will be included // in both the halves if (n % 2 == 1) { maxFirst = Math.Max(maxFirst, arr[mid]); } // To store the maximum element // in the second half int maxSecond = int .MinValue; // Calculate the maximum element // int the second half for ( int i = mid; i < n; i++) { maxSecond = Math.Max(maxSecond, arr[i]); } // Print the found maximums Console.WriteLine(maxFirst + ", " + maxSecond); // cout << maxFirst << ", " << maxSecond; } // Driver Code public static void Main() { int []arr = { 1, 12, 14, 5 }; int n = arr.Length; findMax(arr, n); } } // This code is contributed by nidhiva |
Javascript
// javascript implementation of the approach function findMax(arr, n) { // To store the maximum element // in the first half var maxFirst = Number.MIN_VALUE // Middle index of the array var mid = n / 2; // Calculate the maximum element // in the first half for ( var i = 0; i < mid; i++) { maxFirst = Math.max(maxFirst, arr[i]); } // If the size of array is odd then // the middle element will be included // in both the halves if (n % 2 == 1) { maxFirst = Math.max(maxFirst, arr[mid]); } // To store the maximum element // in the second half var maxSecond = Number.MIN_VALUE // Calculate the maximum element // int the second half for ( var i = mid; i < n; i++) { maxSecond = Math.max(maxSecond, arr[i]); } // Print the found maximums document.write(maxFirst + ", " + maxSecond); } // Driver Code var arr = [ 1, 12, 14, 5 ]; var n = arr.length; findMax(arr, n); // This code is contributed by bunnyram19. |
12, 14
Time Complexity: O(n), since the loop runs from 0 to (mid – 1), and then from mid to (n – 1).
Auxiliary Space: O(1), since no extra space has been taken.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!