Given a Directed Acyclic Graph with V vertices and E edges, the task is to find the set of dominant vertices for each vertex of the graph.
What are Dominators in Graph Theory: In control flow graphs a vertex V1 is the dominator of another vertex V2 if all the paths from the source vertex (in this case the vertex ‘0’) to the vertex V2 passes through V1. By definition, every vertex is one of its own dominators.
Examples:
Input: V = 5, E = 5, adj[][] = {{0, 1}, {0, 2}, {1, 3}, {2, 3}, {3, 4}}
Output:
Dominating set of vertex: 0 –> 0
Dominating set of vertex: 1 –> 0 1
Dominating set of vertex: 2 –> 0 2
Dominating set of vertex: 3 –> 0 3
Dominating set of vertex: 4 –> 0 3 4
Explanation:
0
/ \
1 2
\ /
3
|
4
Here 0 is the entry node, so its dominator is 0 itself.
Only one path exists between (0, 1) so the dominators of 1 are 0, 1.
Only one path exists between (0, 2) so the dominators of 2 are 0, 2.
There are 2 paths between(0, 3) having only 0, 3 in common.
From (0, 4) there are 2 paths (0 1 3 4) and (0 2 3 4) with 0, 3 and 4 common.Input: V = 4, E = 3, adj[][] = {{0, 1}, {0, 2}, {3, 2}}
Output:
Dominating set of vertex: 0 –> 0
Dominating set of vertex: 1 –> 0 1
Dominating set of vertex: 2 –> 0 2
Dominating set of vertex: 3 –> 0 2 3
Approach: The idea is to perform DFS and maintain a set of all the dominators of each vertex. Follow the steps below to solve the problem:
- Initialize a vector of bitset data structure, say b to store the set of all the dominators of the vertices.
- For every node i, set bits in b[i] will represent the set of dominant vertices of i.
- In order to find the dominators for every vertex, it is important to find all the paths in a Directed Acyclic Graph.
- Traverse the graph using DFS to find all the paths in the graph.
- Start the traversal from the root node i.e 0
- While performing DFS, for each vertex i
- If the node is not yet visited, set all the bits of b[i] and mark the node visited
- Store the set of the dominant vertices in the bitset b[i] as the intersection of the set of dominant vertices of its parent. Update b[i] to b[i] & b[parent].
- Update the value of b[i][i] to 1 because each node is a dominator of itself.
- Recursively, call DFS for children nodes of i.
- After performing the above steps, print the dominant vertices for vertex, i.e, the position of the set bits in b[i].
Below is the implementation of the above approach:
C++14
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Declare bitsets for each // vertex to store the set of // dominant vertices vector<bitset<100> > b(100); // Visited array to check if // a vertex has been visited or not int vis[100] = {}; // Function to find set of dominator // vertices for a particular node void findDominator(vector<vector< int > > graph, bitset<100> par, int node) { // If node is unvisited if (vis[node] == 0) { // Set all bits of b[pos] b[node] = ~b[node]; // Update vis[node] to 1 vis[node] = 1; } // Update b[node] with bitwise and // of parent's dominant vertices b[node] &= par; // Node is itself is a // dominant vertex of node b[node][node] = 1; // Traverse the neighbours of node for ( int i = 0; i < ( int )graph[node].size(); i++) { // Recursive function call to // children nodes of node findDominator(graph, b[node], graph[node][i]); } } // Function to build the graph void buildGraph(vector<pair< int , int > > adj, int E, int V) { // Vector of vector to store // the adjacency matrix vector<vector< int > > graph(V + 1); // Build the adjacency matrix for ( int i = 0; i < E; i++) { graph[adj[i].first].push_back(adj[i].second); } // Bitset for node 0 bitset<100> g; // Node 0 itself is a dominant // vertex of itself g[0] = 1; // Update visited of source // node as true vis[0] = 1; // DFS from source vertex findDominator(graph, g, 0); } // Function to find dominant set of vertices void dominantVertices( int V, int E, vector<pair< int , int > > adj) { // Function call to build the graph // and dominant vertices buildGraph(adj, E, V); // Print set of dominating vertices for ( int i = 0; i < V; i++) { cout << i << " -> " ; for ( int j = 0; j < V; j++) { if (b[i][j] == 1) cout << j << " " ; } cout << endl; } } // Driver Code int main() { // Given Input int V = 5, E = 5; vector<pair< int , int > > adj = { { 0, 1 }, { 0, 2 }, { 1, 3 }, { 2, 3 }, { 3, 4 } }; // Function Call dominantVertices(V, E, adj); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG { // Declare bitsets for each // vertex to store the set of // dominant vertices static Vector<Integer> b[] = new Vector[ 100 ]; // Visited array to check if // a vertex has been visited or not static int vis[] = new int [ 100 ]; // Function to find set of dominator // vertices for a particular node static void findDominator(ArrayList<ArrayList<Integer> > graph, Vector<Integer> par, int node) { // If node is unvisited if (vis[node] == 0 ) { // Set all bits of b[pos] for ( int i= 0 ; i<b[node].size(); i++) b[node].set(i, - 1 ); // Update vis[node] to 1 vis[node] = 1 ; } // Update b[node] with bitwise and // of parent's dominant vertices for ( int i= 0 ; i<b[node].size(); i++) b[node].set(i, b[node].get(i) & par.get(i)); // Node is itself is a // dominant vertex of node b[node].set(node, 1 ); // Traverse the neighbours of node for ( int i = 0 ; i < graph.get(node).size(); i++) { // Recursive function call to // children nodes of node findDominator(graph, b[node], graph.get(node).get(i)); } } // Function to build the graph static void buildGraph(ArrayList<ArrayList<Integer> > graph, int V) { // Vector of vector to store // the adjacency matrix // Bitset for node 0 Vector<Integer> g = new Vector<>(); for ( int i= 0 ; i<V; i++) g.add( 0 ); // Node 0 itself is a dominant // vertex of itself g.set( 0 , 1 ); // Update visited of source // node as true vis[ 0 ] = 1 ; // DFS from source vertex findDominator(graph, g, 0 ); } // Function to find dominant set // of vertices static void dominantVertices( int V, ArrayList<ArrayList<Integer> > graph) { // Function call to build the graph // and dominant vertices buildGraph(graph, V); // Print set of dominating vertices for ( int i = 0 ; i < V; i++) { System.out.print(i + " -> " ); for ( int j = 0 ; j < V; j++) { if (b[i].get(j) == 1 ) System.out.print(j + " " ); } System.out.println(); } } // Driver Code public static void main(String[] args) { // Given Input int V = 5 ; ArrayList<ArrayList<Integer> > graph = new ArrayList<>(); for ( int i= 0 ; i<V; i++){ graph.add( new ArrayList<>()); b[i] = new Vector<>(); for ( int j= 0 ; j<V; j++) b[i].add( 0 ); } graph.get( 0 ).add( 1 ); graph.get( 0 ).add( 2 ); graph.get( 1 ).add( 3 ); graph.get( 2 ).add( 3 ); graph.get( 3 ).add( 4 ); // Function Call dominantVertices(V, graph); } } |
Python3
# import the bitarray library from bitarray import bitarray # Declare bitarrays for each # vertex to store the set of # dominant vertices b = [bitarray( 100 ) for i in range ( 100 )] # Visited list to check if # a vertex has been visited or not vis = [ 0 ] * 100 def findDominator(graph, par, node): # If node is unvisited if vis[node] = = 0 : # Set all bits of b[pos] b[node].setall( True ) # Update vis[node] to 1 vis[node] = 1 # Update b[node] with bitwise and # of parent's dominant vertices b[node] & = par # Node is itself is a # dominant vertex of node b[node][node] = True # Traverse the neighbours of node for i in range ( len (graph[node])): # Recursive function call to # children nodes of node findDominator(graph, b[node], graph[node][i]) def buildGraph(adj, E, V): # List of lists to store # the adjacency matrix graph = [[] for i in range (V + 1 )] # Build the adjacency matrix for i in range (E): graph[adj[i][ 0 ]].append(adj[i][ 1 ]) # Bitarray for node 0 g = bitarray( 100 ) g.setall( False ) # Node 0 itself is a dominant # vertex of itself g[ 0 ] = True # Update visited of source # node as true vis[ 0 ] = 1 # DFS from source vertex findDominator(graph, g, 0 ) def dominantVertices(V, E, adj): # Function call to build the graph # and dominant vertices buildGraph(adj, E, V) # Print set of dominating vertices for i in range (V): print (i, " -> " , end = "") for j in range (V): if b[i][j]: print (j, end = " " ) print () # Driver Code if __name__ = = '__main__' : # Given Input V = 5 E = 5 adj = [[ 0 , 1 ], [ 0 , 2 ], [ 1 , 3 ], [ 2 , 3 ], [ 3 , 4 ]] # Function Call dominantVertices(V, E, adj) # this code is contributed by devendrasaluke |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG { static List< int >[] b = new List< int >[100]; // Visited array to check if // a vertex has been visited or not static int [] vis = new int [100]; // Function to find set of dominator // vertices for a particular node static void findDominator(List<List< int >> graph, List< int > par, int node) { // If node is unvisited if (vis[node] == 0) { // Set all bits of b[pos] for ( int i=0; i<b[node].Count; i++) b[node][i] = -1; // Update vis[node] to 1 vis[node] = 1; } // Update b[node] with bitwise and // of parent's dominant vertices for ( int i=0; i<b[node].Count; i++) b[node][i] &= par[i]; // Node is itself is a // dominant vertex of node b[node][node] = 1; // Traverse the neighbours of node for ( int i = 0; i < graph[node].Count; i++) { // Recursive function call to // children nodes of node findDominator(graph, b[node], graph[node][i]); } } // Function to build the graph static void buildGraph(List<List< int >> graph, int V) { // Vector of vector to store // the adjacency matrix // Bitset for node 0 List< int > g = new List< int >(); for ( int i=0; i<V; i++) g.Add(0); // Node 0 itself is a dominant // vertex of itself g[0] = 1; // Update visited of source // node as true vis[0] = 1; // DFS from source vertex findDominator(graph, g, 0); } // Function to find dominant set // of vertices static void dominantVertices( int V, List<List< int >> graph) { // Function call to build the graph // and dominant vertices buildGraph(graph, V); // Print set of dominating vertices for ( int i = 0; i < V; i++) { Console.Write(i + " -> " ); for ( int j = 0; j < V; j++) { if (b[i][j] == 1) Console.Write(j + " " ); } Console.WriteLine(); } } // Driver Code static void Main( string [] args) { // Given Input int V = 5; List<List< int >> graph = new List<List< int >>(); for ( int i=0; i<V; i++){ graph.Add( new List< int >()); b[i] = new List< int >(); for ( int j=0; j<V; j++) b[i].Add(0); } graph[0].Add(1); graph[0].Add(2); graph[1].Add(3); graph[2].Add(3); graph[3].Add(4); // Function Call dominantVertices(V, graph); } } |
Javascript
<script> // javascript program for the above approach // Declare bitsets for each // vertex to store the set of // dominant vertices let b = new Array(100); for (let i = 0; i < 100; i++){ b[i] = new Array(100).fill( false ); } // Visited array to check if // a vertex has been visited or not let vis = new Array(100).fill(0); // Function to find set of dominator // vertices for a particular node function findDominator(graph, par, node) { // If node is unvisited if (vis[node] == 0) { // Set all bits of b[pos] for (let i = 0; i < 100; i++){ if (b[node][i] == true ) b[node][i] = false ; else b[node][i] = true ; } // Update vis[node] to 1 vis[node] = 1; } // Update b[node] with bitwise and // of parent's dominant vertices for (let i = 0; i < 100; i++){ if (b[node][i] == false || par[i] == false ) b[node][i] = false ; } // Node is itself is a // dominant vertex of node b[node][node] = 1; // Traverse the neighbours of node for (let i = 0; i < graph[node].length; i++) { // Recursive function call to // children nodes of node findDominator(graph, b[node], graph[node][i]); } } // Function to build the graph function buildGraph(adj, E, V) { // Vector of vector to store // the adjacency matrix let graph = new Array(V+1); for (let i = 0; i < V+1; i++){ graph[i] = new Array(); } // Build the adjacency matrix for (let i = 0; i < E; i++) { graph[adj[i][0]].push(adj[i][1]); } // Bitset for node 0 let g = new Array(100).fill( false ); // Node 0 itself is a dominant // vertex of itself g[0] = 1; // Update visited of source // node as true vis[0] = 1; // DFS from source vertex findDominator(graph, g, 0); } // Function to find dominant set of vertices function dominantVertices(V, E, adj) { // Function call to build the graph // and dominant vertices buildGraph(adj, E, V); // Print set of dominating vertices for (let i = 0; i < V; i++) { document.write(i + " -> " ); for (let j = 0; j < V; j++) { if (b[i][j] == true ) document.write(j + " " ); } document.write( "\n" ); } } // Driver Code // Given Input let V = 5, E = 5; let adj = [ [ 0, 1 ], [ 0, 2 ], [ 1, 3 ], [ 2, 3 ], [ 3, 4 ] ]; // Function Call dominantVertices(V, E, adj); // The code is contributed by Nidhi goel. </script> |
0 -> 0 1 -> 0 1 2 -> 0 2 3 -> 0 3 4 -> 0 3 4
Time Complexity: O(V3)
Auxiliary Space: O(V2)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!