Monday, November 18, 2024
Google search engine
HomeData Modelling & AIIntersection point of two Linked List by marking visited nodes

Intersection point of two Linked List by marking visited nodes

Given two linked lists of size N and M consisting of positive value nodes, having a common intersection point, the task is to find the intersection point of the two linked lists where they merge.

Examples:

Input: L1: 3 ? 6 ? 9 ? 15 ? 30, L2: 10 ? 15 ? 30
Output: 15
Explanation:

From the above image, the intersection point of the two linked lists is 15.

Input: L1: 1 ? 2 ? 3, L2: 4 ? 5 ? 1 ? 2 ? 3
Output: 1

Approach: The idea is to traverse the first linked list and multiply the value of each node by -1 thus making them negative. Then, traverse the second linked list and print the value of the first node having a negative value. Follow the steps below to solve the problem:

  • Traverse the first linked list L1 and multiply the value of each node by -1.
  • Now, traverse the second linked list L2 and if there exists any node with negative values then print the absolute value of the node’s value as the resultant intersection of the linked list and break out of the loop.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
  
#include <bits/stdc++.h>
using namespace std;
  
// Structure of a node
// of a Linked List
class Node {
public:
    int data;
    Node* next;
  
    // Constructor
    Node(int x)
    {
        data = x;
        next = NULL;
    }
};
  
// Function to find the intersection
// point of the two Linked Lists
Node* intersectingNode(Node* headA,
                       Node* headB)
{
  
    // Traverse the first linked list
    // and multiply all values by -1
    Node* a = headA;
  
    while (a) {
  
        // Update a -> data
        a->data *= -1;
  
        // Update a
        a = a->next;
    }
  
    // Traverse the second Linked List
    // and find the value of the first
    // node having negative value
    Node* b = headB;
  
    while (b) {
  
        // Intersection point
        if (b->data < 0)
            break;
  
        // Update b
        b = b->next;
    }
  
    return b;
}
  
// Function to create linked lists
void formLinkList(Node*& head1,
                  Node*& head2)
{
    // Linked List L1
    head1 = new Node(3);
    head1->next = new Node(6);
    head1->next->next = new Node(9);
    head1->next->next->next = new Node(15);
    head1->next->next->next->next = new Node(30);
  
    // Linked List L2
    head2 = new Node(10);
    head2->next = head1->next->next->next;
  
    return;
}
  
// Driver Code
int main()
{
    Node* head1;
    Node* head2;
    formLinkList(head1, head2);
  
    cout << abs(intersectingNode(head1,
                                 head2)
                    ->data);
  
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
  
class GFG{
      
static Node head1 = null;
static Node head2 = null;
  
// Structure of a node
// of a Linked List
static class Node
{
    int data;
    Node next;
  
    // Constructor
    Node(int x)
    {
        data = x;
        next = null;
    }
}
  
// Function to find the intersection
// point of the two Linked Lists
static Node intersectingNode(Node headA, Node headB)
{
      
    // Traverse the first linked list
    // and multiply all values by -1
    Node a = headA;
  
    while (a != null
    {
          
        // Update a -> data
        a.data *= -1;
  
        // Update a
        a = a.next;
    }
  
    // Traverse the second Linked List
    // and find the value of the first
    // node having negative value
    Node b = headB;
  
    while (b != null)
    {
          
        // Intersection point
        if (b.data < 0)
            break;
  
        // Update b
        b = b.next;
    }
    return b;
}
  
// Function to create linked lists
static void formLinkList()
{
      
    // Linked List L1
    head1 = new Node(3);
    head1.next = new Node(6);
    head1.next.next = new Node(9);
    head1.next.next.next = new Node(15);
    head1.next.next.next.next = new Node(30);
  
    // Linked List L2
    head2 = new Node(10);
    head2.next = head1.next.next.next;
  
    return;
}
  
// Driver Code
public static void main(String[] args)
{
    formLinkList();
  
    System.out.println(Math.abs(
        intersectingNode(head1, head2).data));
}
}
  
// This code is contributed by Dharanendra L V.


Python3




# Python3 program for the above approach
  
# Structure of a node
# of a Linked List
class Node:
      
    def __init__(self, d):
          
        self.data = d
        self.next = None
  
# Function to find the intersection
# point of the two Linked Lists
def intersectingNode(headA, headB):
  
    # Traverse the first linked list
    # and multiply all values by -1
    a = headA
  
    while (a):
  
        # Update a . data
        a.data *= -1
  
        # Update a
        a = a.next
  
    # Traverse the second Linked List
    # and find the value of the first
    # node having negative value
    b = headB
  
    while (b):
  
        # Intersection point
        if (b.data < 0):
            break
  
        # Update b
        b = b.next
  
    return b
  
# Function to create linked lists
def formLinkList(head1, head2):
      
    # Linked List L1
    head1 = Node(3)
    head1.next = Node(6)
    head1.next.next = Node(9)
    head1.next.next.next = Node(15)
    head1.next.next.next.next = Node(30)
  
    # Linked List L2
    head2 = Node(10)
    head2.next = head1.next.next.next
  
    return head1, head2
  
# Driver Code
if __name__ == '__main__':
      
    head1, head2 = formLinkList(None, None)
  
    print(abs(intersectingNode(head1, head2).data))
  
# This code is contributed by mohit kumar 29


C#




// C# program for the above approach
  
using System;
  
public class Node
{
    public int data;
    public Node next;
   
    // Constructor
    public Node(int x)
    {
        data = x;
        next = null;
    }
}
  
public class GFG{
      
    static Node head1 = null;
static Node head2 = null;
// Function to find the intersection
// point of the two Linked Lists
static Node intersectingNode(Node headA, Node headB)
{
       
    // Traverse the first linked list
    // and multiply all values by -1
    Node a = headA;
   
    while (a != null)
    {
           
        // Update a -> data
        a.data *= -1;
   
        // Update a
        a = a.next;
    }
   
    // Traverse the second Linked List
    // and find the value of the first
    // node having negative value
    Node b = headB;
   
    while (b != null)
    {
           
        // Intersection point
        if (b.data < 0)
            break;
   
        // Update b
        b = b.next;
    }
    return b;
}
   
// Function to create linked lists
static void formLinkList()
{
       
    // Linked List L1
    head1 = new Node(3);
    head1.next = new Node(6);
    head1.next.next = new Node(9);
    head1.next.next.next = new Node(15);
    head1.next.next.next.next = new Node(30);
   
    // Linked List L2
    head2 = new Node(10);
    head2.next = head1.next.next.next;
   
    return;
}
   
// Driver Code
      
    static public void Main ()
    {
          
        formLinkList();
   
    Console.WriteLine(Math.Abs(
        intersectingNode(head1, head2).data));
          
    }
}
  
// This code is contributed by unknown2108.


Javascript




<script>
  
// JavaScript program for the above approach
  
let head1 = null;
let head2 = null;
  
// Structure of a node
// of a Linked List
class Node
{
    constructor(x)
    {
        this.data=x;
        this.next=null;
    }
}
  
// Function to find the intersection
// point of the two Linked Lists
function intersectingNode(headA,headB)
{
    // Traverse the first linked list
    // and multiply all values by -1
    let a = headA;
   
    while (a != null)
    {
           
        // Update a -> data
        a.data *= -1;
   
        // Update a
        a = a.next;
    }
   
    // Traverse the second Linked List
    // and find the value of the first
    // node having negative value
    let b = headB;
   
    while (b != null)
    {
           
        // Intersection point
        if (b.data < 0)
            break;
   
        // Update b
        b = b.next;
    }
    return b;
}
  
// Function to create linked lists
function formLinkList()
{
    // Linked List L1
    head1 = new Node(3);
    head1.next = new Node(6);
    head1.next.next = new Node(9);
    head1.next.next.next = new Node(15);
    head1.next.next.next.next = new Node(30);
   
    // Linked List L2
    head2 = new Node(10);
    head2.next = head1.next.next.next;
   
    return;
}
  
// Driver Code
formLinkList();
  
document.write(Math.abs(
intersectingNode(head1, head2).data));
  
// This code is contributed by patel2127
  
</script>
  


Output: 

15

 

Time Complexity: O(N + M)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments