Monday, November 18, 2024
Google search engine
HomeData Modelling & AISum of distinct elements when elements are in range 1 to n

Sum of distinct elements when elements are in range 1 to n

Given an array of n elements such that every element of the array is an integer in the range 1 to n, find the sum of all the distinct elements of the array.

Examples:  

Input: arr[] = {5, 1, 2, 4, 6, 7, 3, 6, 7}
Output: 28

The distinct elements in the array are 1, 2, 
3, 4, 5, 6, 7

Input: arr[] = {1, 1, 1}
Output: 1

The problem has appeared here as a general problem and the solution will work for the above case also. But a better approach is explained below.

The approach is to mark the occurrences of the array elements by making the elements at those indices negative. Example, a[0] = 1, a[1] = 1, a[2] = 1. 

We check if a[abs(a[i])-1] is >=0, if yes, mark a[abs(a[i])-1] as negative. i.e. a[0] = 1 >=0, we mark a[1-1] as a[0] = -1. Next, a[1], check if (abs(a[1]-1) is +ve or not. If -ve, it means a[1] has already occurred before, else it is the first occurrence of this element. 

Implementation:

C++




// C++ program to find sum of distinct elements
#include <iostream>
using namespace std;
  
// Returns sum of distinct elements in arr[] assuming
// that elements in a[] are in range from 1 to n.
int sumOfDistinct(int a[], int n)
{
    int sum = 0;
    for (int i = 0; i < n; i++) {
      
        // If element appears first time
        if (a[abs(a[i]) - 1] >= 0) {
            sum += abs(a[i]);
            a[abs(a[i]) - 1] *= -1;
        }
    }
     
    return sum;
}
  
// Driver code
int main()
{
    int a[] = { 5, 1, 2, 4, 6, 7, 3, 6, 7 };
    int n = sizeof(a)/sizeof(a[0]);
    cout << sumOfDistinct(a, n) << endl;
    return 0;
}


Java




// JAVA program to find sum of distinct 
// elements in sorted order
import java.io.*;
import java.util.*;
import java.math.*;
  
class GFG{
      
    // Returns sum of distinct elements in arr[]
    // assuming that elements in a[] are in 
    // range from 1 to n.
    static int sumOfDistinct(int a[], int n)
    {
        int sum = 0;
        for (int i = 0; i < n; i++) {
      
            // If element appears first time
            if (a[(Math.abs(a[i]) - 1)] >= 0) {
                sum += Math.abs(a[i]);
                a[(Math.abs(a[i]) - 1)] *= -1;
            }
        }
      
        return sum;
    }
  
  
    // Driver code
    public static void main(String args[])
    {
        int a[] = { 5, 1, 2, 4, 6, 7, 3, 6, 7 };
        int n = a.length;
        System.out.println(sumOfDistinct(a, n) );
    }
}
  
// This code is contributed by Nikita Tiwari.


Python3




# Python program to find sum of distinct elements 
# in sorted order
import math
  
# Returns sum of distinct elements in arr[]
# assuming that elements in a[] are in 
# range from 1 to n.
def sumOfDistinct(a , n) :
    sum = 0
    i = 0
    while i < n:
  
        # If element appears first time
        if (a[abs(a[i]) - 1] >= 0) :
            sum = sum + abs(a[i])
            a[abs(a[i]) - 1] = a[abs(a[i]) - 1] * (-1)
        i = i + 1
      
    return sum;
      
      
# Driver code
a = [ 5, 1, 2, 4, 6, 7, 3, 6, 7 ]
n = len(a)
print (sumOfDistinct(a, n))
      
# This code is contributed by Nikita Tiwari.


C#




// C# program to find sum of distinct 
// elements in sorted order
using System;
  
class GFG{
      
    // Returns sum of distinct elements
    // in arr[] assuming that elements
    // in a[] are in range from 1 to n 
    static int sumOfDistinct(int []a, int n)
    {
        int sum = 0;
        for (int i = 0; i < n; i++) {
      
            // If element appears first time
            if (a[(Math.Abs(a[i]) - 1)] >= 0) {
                sum += Math.Abs(a[i]);
                a[(Math.Abs(a[i]) - 1)] *= - 1;
            }
        }
      
        return sum;
    }
  
    // Driver code
    public static void Main()
    {
        int []a = {5, 1, 2, 4, 6, 7, 3, 6, 7};
        int n = a.Length;
        Console.Write(sumOfDistinct(a, n));
    }
}
  
// This code is contributed by Nitin Mittal


PHP




<?php
// PHP program to find sum of
// distinct elements
  
// Returns sum of distinct 
// elements in arr[] assuming
// that elements in a[] are 
// in range from 1 to n.
function sumOfDistinct($a, $n)
{
    $sum = 0;
    for ($i = 0; $i < $n; $i++) 
    {
      
        // If element appears first time
        if ($a[abs($a[$i]) - 1] >= 0)
        {
            $sum += abs($a[$i]);
            $a[abs($a[$i]) - 1] *= -1;
        }
    }
      
    return $sum;
}
  
    // Driver code
    $a = array(5, 1, 2, 4, 6, 7, 3, 6, 7);
    $n = sizeof($a);
    echo sumOfDistinct($a, $n) ;
  
// This code is contributed by nitin mittal
?>


Javascript




<script>
// java script  program to find sum of
// distinct elements
  
// Returns sum of distinct
// elements in arr[] assuming
// that elements in a[] are
// in range from 1 to n.
function sumOfDistinct(a, n)
{
    let sum = 0;
    for (let i = 0; i < n; i++)
    {
      
        // If element appears first time
        if (a[(Math.abs(a[i])) - 1] >= 0) {
                sum += Math.abs(a[i]);
                a[(Math.abs(a[i]) - 1)] *= -1;
            }
    }
      
    return sum;
}
  
    // Driver code
    let a = [5, 1, 2, 4, 6, 7, 3, 6, 7];
    let n = a.length;
    document.write( sumOfDistinct(a, n));
  
      
//contributed by bobby
  
</script>


Output

28

Time complexity: O(n) 
Auxiliary Space : O(1)

This article is contributed by Ekta Goel. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks. 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments