Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIMinimum steps to reach any of the boundary edges of a matrix...

Minimum steps to reach any of the boundary edges of a matrix | Set-2

Given an N X M matrix, where ai, j = 1 denotes the cell is not empty, ai, j = 0 denotes the cell is empty and ai, j = 2, denotes that you are standing at that cell. You can move vertically up or down and horizontally left or right to any cell which is empty. The task is to find the minimum number of steps to reach any boundary edge of the matrix. Print -1 if not possible to reach any of the boundary edges. 

Note: There will be only one cell with value 2 in the entire matrix. 

Examples:

Input: matrix[] = {1, 1, 1, 0, 1}
                  {1, 0, 2, 0, 1} 
                  {0, 0, 1, 0, 1}
                  {1, 0, 1, 1, 0} 
Output: 2
Move to the right and then move 
upwards to reach the nearest boundary
edge. 

Input: matrix[] = {1, 1, 1, 1, 1}
                  {1, 0, 2, 0, 1} 
                  {1, 0, 1, 0, 1}
                  {1, 1, 1, 1, 1}
Output: -1 

Approach: The problem has been solved in Set-1 using Dynamic Programming. In this article, we will be discussing a method using BFS. Given below are the steps to solve the above problem.

  • Find the index of the ‘2’ in the matrix.
  • Check if this index is a boundary edge or not, if it is, then no moves are required.
  • Insert the index x and index y of ‘2’ in the queue with moves as 0.
  • Use a 2-D vis array to mark the visiting positions in the matrix.
  • Iterate till the queue is empty or we reach any boundary edge.
  • Get the front element(x, y, val = moves) in the queue and mark vis[x][y] as visited. Do all the possible moves(right, left, up and down) possible.
  • Re-insert val+1 and their indexes of all the valid moves to the queue.
  • If the x and y become the boundary edges any time return val.
  • If all the moves are made, and the queue is empty, then it is not possible, hence return -1.

Below is the implementation of the above approach: 

CPP




// C++ program to find Minimum steps
// to reach any of the boundary
// edges of a matrix
#include <bits/stdc++.h>
using namespace std;
#define r 4
#define c 5
 
// Function to check validity
bool check(int i, int j, int n, int m, int mat[r])
{
    if (i >= 0 && i < n && j >= 0 && j < m) {
        if (mat[i][j] == 0)
            return true;
    }
    return false;
}
 
// Function to find out minimum steps
int findMinSteps(int mat[r], int n, int m)
{
 
    int indx, indy;
    indx = indy = -1;
 
    // Find index of only 2 in matrix
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (mat[i][j] == 2) {
                indx = i, indy = j;
                break;
            }
        }
        if (indx != -1)
            break;
    }
 
    // Push elements in the queue
    queue<pair<int, pair<int, int> > > q;
 
    // Push the position 2 with moves as 0
    q.push(make_pair(0, make_pair(indx, indy)));
 
    // If already at boundary edge
    if (check(indx, indy, n, m, mat))
        return 0;
 
    // Marks the visit
    bool vis[r];
    memset(vis, 0, sizeof vis);
 
    // Iterate in the queue
    while (!q.empty()) {
        // Get the front of the queue
        auto it = q.front();
 
        // Pop the first element from the queue
        q.pop();
 
        // Get the position
        int x = it.second.first;
        int y = it.second.second;
 
        // Moves
        int val = it.first;
 
        // If a boundary edge
        if (x == 0 || x == (n - 1) || y == 0 || y == (m - 1)) {
            return val;
        }
 
        // Marks the visited array
        vis[x][y] = 1;
 
        // If a move is possible
        if (check(x - 1, y, n, m, mat)) {
 
            // If not visited previously
            if (!vis[x - 1][y])
                q.push(make_pair(val + 1, make_pair(x - 1, y)));
        }
 
        // If a move is possible
        if (check(x + 1, y, n, m, mat)) {
 
            // If not visited previously
            if (!vis[x + 1][y])
                q.push(make_pair(val + 1, make_pair(x + 1, y)));
        }
 
        // If a move is possible
        if (check(x, y + 1, n, m, mat)) {
 
            // If not visited previously
            if (!vis[x][y + 1])
                q.push(make_pair(val + 1, make_pair(x, y + 1)));
        }
 
        // If a move is possible
        if (check(x, y - 1, n, m, mat)) {
 
            // If not visited previously
            if (!vis[x][y - 1])
                q.push(make_pair(val + 1, make_pair(x, y - 1)));
        }
    }
 
    return -1;
}
 
// Driver Code
int main()
{
    int mat[r] = { { 1, 1, 1, 0, 1 },
                      { 1, 0, 2, 0, 1 },
                      { 0, 0, 1, 0, 1 },
                      { 1, 0, 1, 1, 0 } };
 
    cout << findMinSteps(mat, r, c);
}


Java




// Java program to find Minimum steps
// to reach any of the boundary
// edges of a matrix
import java.util.*;
 
class GFG {
 
  public static final int R = 4;
  public static final int C = 5;
 
  // Function to check validity
  public static boolean check(int i, int j, int n, int m,
                              int[][] mat)
  {
    if (i >= 0 && i < n && j >= 0 && j < m) {
      if (mat[i][j] == 0) {
        return true;
      }
    }
    return false;
  }
 
  // Function to find out minimum steps
  public static int findMinSteps(int[][] mat, int n,
                                 int m)
  {
 
    int indx, indy;
    indx = indy = -1;
 
    // Find index of only 2 in matrix
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < m; j++) {
        if (mat[i][j] == 2) {
          indx = i;
          indy = j;
          break;
        }
      }
      if (indx != -1) {
        break;
      }
    }
 
    // Push elements in the queue
    Queue<int[]> q = new LinkedList<int[]>();
 
    // Push the position 2 with moves as 0
    q.add(new int[] { indx, indy, 0 });
 
    // If already at boundary edge
    if (check(indx, indy, n, m, mat)) {
      return 0;
    }
 
    // Marks the visit
    boolean[][] vis = new boolean[n][m];
 
    // Iterate in the queue
    while (!q.isEmpty()) {
 
      // Pop the first element from the queue
      int[] curr = q.poll();
 
      // Get the position
      int x = curr[0];
      int y = curr[1];
      int val = curr[2];
 
      // If a boundary edge
      if (x == 0 || x == (n - 1) || y == 0
          || y == (m - 1)) {
        return val;
      }
 
      // Marks the visited array
      vis[x][y] = true;
 
      // If a move is possible towards up
      if (check(x - 1, y, n, m, mat)) {
 
        // If not visited previously
        if (!vis[x - 1][y]) {
          q.add(new int[] { x - 1, y, val + 1 });
        }
      }
 
      // If a move is possible towards down
      if (check(x + 1, y, n, m, mat)) {
 
        // If not visited previously
        if (!vis[x + 1][y]) {
          q.add(new int[] { x + 1, y, val + 1 });
        }
      }
 
      // If a move is possible towards right
      if (check(x, y + 1, n, m, mat)) {
 
        // If not visited previously
        if (!vis[x][y + 1]) {
          q.add(new int[] { x, y + 1, val + 1 });
        }
      }
 
      // If a move is possible towards left
      if (check(x, y - 1, n, m, mat)) {
 
        // If not visited previously
        if (!vis[x][y - 1]) {
          q.add(new int[] { x, y - 1, val + 1 });
        }
      }
    }
    return -1;
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    int[][] mat = { { 1, 1, 1, 0, 1 },
                   { 1, 0, 2, 0, 1 },
                   { 0, 0, 1, 0, 1 },
                   { 1, 0, 1, 1, 0 } };
    System.out.println(findMinSteps(mat, R, C));
  }
}
 
// This code is contributed by Prasad Kandekar(prasad264)


Python3




# Python3 program to find Minimum steps
# to reach any of the boundary
# edges of a matrix
from collections import deque
r = 4
c = 5
 
# Function to check validity
def check(i, j, n, m, mat):
 
    if (i >= 0 and i < n and j >= 0 and j < m):
        if (mat[i][j] == 0):
            return True
 
    return False
 
# Function to find out minimum steps
def findMinSteps(mat, n, m):
 
    indx = indy = -1;
 
    # Find index of only 2 in matrix
    for i in range(n):
        for j in range(m):
            if (mat[i][j] == 2):
                indx = i
                indy = j
                break
 
        if (indx != -1):
            break
 
    # Push elements in the queue
    q = deque()
 
    # Push the position 2 with moves as 0
    q.append([0, indx, indy])
 
    # If already at boundary edge
    if (check(indx, indy, n, m, mat)):
        return 0
 
    # Marks the visit
    vis=[ [0 for i in range(r)]for i in range(r)]
 
    # Iterate in the queue
    while len(q) > 0:
         
        # Get the front of the queue
        it = q.popleft()
 
        #Pop the first element from the queue
 
        # Get the position
        x = it[1]
        y = it[2]
 
        # Moves
        val = it[0]
 
        # If a boundary edge
        if (x == 0 or x == (n - 1) or y == 0 or y == (m - 1)):
            return val
 
 
        # Marks the visited array
        vis[x][y] = 1
 
        # If a move is possible
        if (check(x - 1, y, n, m, mat)):
 
            # If not visited previously
            if (not vis[x - 1][y]):
                q.append([val + 1, x - 1, y])
 
        # If a move is possible
        if (check(x + 1, y, n, m, mat)):
 
            # If not visited previously
            if (not vis[x + 1][y]):
                q.append([val + 1, x + 1, y])
 
        # If a move is possible
        if (check(x, y + 1, n, m, mat)):
 
            # If not visited previously
            if (not vis[x][y + 1]):
                q.append([val + 1, x, y + 1])
 
        # If a move is possible
        if (check(x, y - 1, n, m, mat)):
 
            # If not visited previously
            if (not vis[x][y - 1]):
                q.append([val + 1, x, y - 1])
 
    return -1
 
# Driver Code
mat = [[1, 1, 1, 0, 1 ],
       [1, 0, 2, 0, 1 ],
       [0, 0, 1, 0, 1 ],
       [1, 0, 1, 1, 0 ] ];
 
print(findMinSteps(mat, r, c))
 
# This code is contributed by mohit kumar 29


C#




// C# program to find Minimum steps
// to reach any of the boundary
// edges of a matrix
using System;
using System.Collections.Generic;
 
public class GFG {
  public static readonly int R = 4;
  public static readonly int C = 5;
 
  // Function to check validity
  public static bool Check(int i, int j, int n, int m,
                           int[, ] mat)
  {
    if (i >= 0 && i < n && j >= 0 && j < m) {
      if (mat[i, j] == 0) {
        return true;
      }
    }
    return false;
  }
 
  // Function to find out minimum steps
  public static int findMinSteps(int[, ] mat, int n,
                                 int m)
  {
    int indx, indy;
    indx = indy = -1;
 
    // Find index of only 2 in matrix
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < m; j++) {
        if (mat[i, j] == 2) {
          indx = i;
          indy = j;
          break;
        }
      }
      if (indx != -1) {
        break;
      }
    }
 
    // Push elements in the queue
    Queue<int[]> q = new Queue<int[]>();
 
    // Push the position 2 with moves as 0
    q.Enqueue(new int[] { indx, indy, 0 });
 
    // If already at boundary edge
    if (Check(indx, indy, n, m, mat)) {
      return 0;
    }
 
    // Marks the visit
    bool[, ] vis = new bool[n, m];
 
    // Iterate in the queue
    while (q.Count != 0) {
 
      // Get the front of the queue
      int[] curr = q.Dequeue();
 
      // Get the position
      int x = curr[0];
      int y = curr[1];
 
      // Moves
      int val = curr[2];
 
      // If a boundary edge
      if (x == 0 || x == (n - 1) || y == 0
          || y == (m - 1)) {
        return val;
      }
 
      // Marks the visited array
      vis[x, y] = true;
 
      // If a move is possible
      if (Check(x - 1, y, n, m, mat)) {
 
        // If not visited previously
        if (!vis[x - 1, y]) {
          q.Enqueue(
            new int[] { x - 1, y, val + 1 });
        }
      }
 
      // If a move is possible
      if (Check(x + 1, y, n, m, mat)) {
 
        // If not visited previously
        if (!vis[x + 1, y]) {
          q.Enqueue(
            new int[] { x + 1, y, val + 1 });
        }
      }
 
      // If a move is possible
      if (Check(x, y + 1, n, m, mat)) {
 
        // If not visited previously
        if (!vis[x, y + 1]) {
          q.Enqueue(
            new int[] { x, y + 1, val + 1 });
        }
      }
 
      // If a move is possible
      if (Check(x, y - 1, n, m, mat)) {
 
        // If not visited previously
        if (!vis[x, y - 1]) {
          q.Enqueue(
            new int[] { x, y - 1, val + 1 });
        }
      }
    }
    return -1;
  }
 
  // Driver Code
  static public void Main(string[] args)
  {
    int[, ] mat = { { 1, 1, 1, 0, 1 },
                   { 1, 0, 2, 0, 1 },
                   { 0, 0, 1, 0, 1 },
                   { 1, 0, 1, 1, 0 } };
 
    Console.WriteLine(findMinSteps(mat, 4, 5));
  }
}
 
// This code is contributed by Prasad Kandekar(prasad264)


Javascript




<script>
 
// JavaScript program to find Minimum steps
// to reach any of the boundary
// edges of a matrix
const r = 4
const c = 5
 
// Function to check validity
function check(i, j, n, m, mat){
 
    if (i >= 0 && i < n && j >= 0 && j < m){
        if (mat[i][j] == 0)
            return true
    }
 
    return false
 
}
 
// Function to find out minimum steps
function findMinSteps(mat, n, m){
 
    let indx = -1, indy = -1;
 
    // Find index of only 2 in matrix
    for(let i=0;i<n;i++){
        for(let j=0;j<m;j++){
            if (mat[i][j] == 2){
                indx = i
                indy = j
                break
            }
        }
        if (indx != -1){
            break
        }
    }
 
    // Push elements in the queue
    let q = []
 
    // Push the position 2 with moves as 0
    q.push([0, indx, indy])
 
    // If already at boundary edge
    if (check(indx, indy, n, m, mat))
        return 0
 
    // Marks the visit
    let vis = new Array(r);
    for(let i=0;i<r;i++){
        vis[i] = new Array(r).fill(0);
    }
 
    // Iterate in the queue
    while(q.length > 0){
         
        // Get the front of the queue
        let it = q.shift()
 
        //Pop the first element from the queue
 
        // Get the position
        let x = it[1]
        let y = it[2]
 
        // Moves
        let val = it[0]
 
        // If a boundary edge
        if (x == 0 || x == (n - 1) || y == 0 || y == (m - 1))
            return val
 
 
        // Marks the visited array
        vis[x][y] = 1
 
        // If a move is possible
        if (check(x - 1, y, n, m, mat)){
 
            // If not visited previously
            if (vis[x - 1][y] == 0)
                q.push([val + 1, x - 1, y])
        }
 
        // If a move is possible
        if (check(x + 1, y, n, m, mat)){
 
            // If not visited previously
            if (vis[x + 1][y] == 0)
                q.push([val + 1, x + 1, y])
        }
 
        // If a move is possible
        if (check(x, y + 1, n, m, mat)){
 
            // If not visited previously
            if (vis[x][y + 1] == 0)
                q.push([val + 1, x, y + 1])
        }
 
        // If a move is possible
        if (check(x, y - 1, n, m, mat)){
 
            // If not visited previously
            if (vis[x][y - 1] == 0)
                q.push([val + 1, x, y - 1])
        }
    }
 
    return -1
}
 
// Driver Code
 
let mat = [[1, 1, 1, 0, 1 ],
    [1, 0, 2, 0, 1 ],
    [0, 0, 1, 0, 1 ],
    [1, 0, 1, 1, 0 ]];
 
document.write(findMinSteps(mat, r, c))
 
// This code is contributed by shinjanpatra
 
</script>


Output

2

Complexity Analysis:

  • Time Complexity: O(N^2) 
  • Auxiliary Space: O(N^2)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments