Monday, November 18, 2024
Google search engine
HomeData Modelling & AIMinimum operations to make sum of neighbouring elements <= X

Minimum operations to make sum of neighbouring elements <= X

Given an array arr[] of N elements and an integer X, the task is to find the minimum number of operations required to make sum of neighbouring elements less than the given number X. In a single operation, you can choose an element arr[i] and decrease its value by 1.
Examples: 
 

Input: arr[] = {2, 2, 2}, X = 3 
Output:
Decrement arr[1] by 1 and the array becomes {2, 1, 2}. 
Now, 2 + 1 = 3 and 1 + 2 = 3
Input: arr[] = {1, 6, 1, 2, 0, 4}, X = 1 
Output: 11 
 

 

Approach: Suppose the elements of the array are a1, a2, …, an. Let’s assume a case when all a[i] are greater than X
First we need to make all the a[i] equal to x. We will calculate the number of operations required for it. 
Now, all elements will be of the form of x, x, x, x…, x N times. Here we can observe that the maximum neighbouring sum is equal to 2 * X
Now, traverse the array from left to right, and for each i, if sum of two left neighbours that is a[i] + a[i – 1] > X then change a[i] to such a value that their net sum becomes equal to X
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum
// number of operations required
int MinOperations(int n, int x, int* arr)
{
 
    // To store total operations required
    int total = 0;
    for (int i = 0; i < n; ++i) {
 
        // First make all elements equal to x
        // which are currently greater
        if (arr[i] > x) {
            int difference = arr[i] - x;
            total = total + difference;
            arr[i] = x;
        }
    }
 
    // Left scan the array
    for (int i = 1; i < n; ++i) {
        int LeftNeigbouringSum = arr[i] + arr[i - 1];
 
        // Update the current element such that
        // neighbouring sum is < x
        if (LeftNeigbouringSum > x) {
            int current_diff = LeftNeigbouringSum - x;
            arr[i] = max(0, arr[i] - current_diff);
            total = total + current_diff;
        }
    }
    return total;
}
 
// Driver code
int main()
{
    int X = 1;
    int arr[] = { 1, 6, 1, 2, 0, 4 };
    int N = sizeof(arr) / sizeof(int);
    cout << MinOperations(N, X, arr);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
 
// Function to return the minimum
// number of operations required
static int MinOperations(int n, int x, int[] arr)
{
 
    // To store total operations required
    int total = 0;
    for (int i = 0; i < n; ++i)
    {
 
        // First make all elements equal to x
        // which are currently greater
        if (arr[i] > x)
        {
            int difference = arr[i] - x;
            total = total + difference;
            arr[i] = x;
        }
    }
 
    // Left scan the array
    for (int i = 1; i < n; ++i)
    {
        int LeftNeigbouringSum = arr[i] + arr[i - 1];
 
        // Update the current element such that
        // neighbouring sum is < x
        if (LeftNeigbouringSum > x)
        {
            int current_diff = LeftNeigbouringSum - x;
            arr[i] = Math.max(0, arr[i] - current_diff);
            total = total + current_diff;
        }
    }
    return total;
}
 
// Driver code
public static void main(String args[])
{
    int X = 1;
    int arr[] = { 1, 6, 1, 2, 0, 4 };
    int N = arr.length;
    System.out.println(MinOperations(N, X, arr));
}
}
 
// This code is contributed by 29AjayKumar


Python




# Python3 implementation of the approach
 
# Function to return the minimum
# number of operations required
def MinOperations(n, x, arr):
 
    # To store total operations required
    total = 0
    for i in range(n):
 
        # First make all elements equal to x
        # which are currently greater
        if (arr[i] > x):
            difference = arr[i] - x
            total = total + difference
            arr[i] = x
 
 
    # Left scan the array
    for i in range(n):
        LeftNeigbouringSum = arr[i] + arr[i - 1]
 
        # Update the current element such that
        # neighbouring sum is < x
        if (LeftNeigbouringSum > x):
            current_diff = LeftNeigbouringSum - x
            arr[i] = max(0, arr[i] - current_diff)
            total = total + current_diff
 
    return total
 
 
# Driver code
X = 1
arr=[1, 6, 1, 2, 0, 4 ]
N = len(arr)
print(MinOperations(N, X, arr))
 
# This code is contributed by mohit kumar 29


C#




// C# implementation of the approach
using System;
     
class GFG
{
 
// Function to return the minimum
// number of operations required
static int MinOperations(int n, int x, int[] arr)
{
 
    // To store total operations required
    int total = 0;
    for (int i = 0; i < n; ++i)
    {
 
        // First make all elements equal to x
        // which are currently greater
        if (arr[i] > x)
        {
            int difference = arr[i] - x;
            total = total + difference;
            arr[i] = x;
        }
    }
 
    // Left scan the array
    for (int i = 1; i < n; ++i)
    {
        int LeftNeigbouringSum = arr[i] + arr[i - 1];
 
        // Update the current element such that
        // neighbouring sum is < x
        if (LeftNeigbouringSum > x)
        {
            int current_diff = LeftNeigbouringSum - x;
            arr[i] = Math.Max(0, arr[i] - current_diff);
            total = total + current_diff;
        }
    }
    return total;
}
 
// Driver code
public static void Main(String []args)
{
    int X = 1;
    int []arr = { 1, 6, 1, 2, 0, 4 };
    int N = arr.Length;
    Console.WriteLine(MinOperations(N, X, arr));
}
}
 
/* This code is contributed by PrinciRaj1992 */


Javascript




<script>
// Javascript implementation of the approach
 
// Function to return the minimum
// number of operations required
function MinOperations(n, x, arr)
{
 
    // To store total operations required
    let total = 0;
    for (let i = 0; i < n; ++i)
    {
   
        // First make all elements equal to x
        // which are currently greater
        if (arr[i] > x)
        {
            let difference = arr[i] - x;
            total = total + difference;
            arr[i] = x;
        }
    }
   
    // Left scan the array
    for (let i = 1; i < n; ++i)
    {
        let LeftNeigbouringSum = arr[i] + arr[i - 1];
   
        // Update the current element such that
        // neighbouring sum is < x
        if (LeftNeigbouringSum > x)
        {
            let current_diff = LeftNeigbouringSum - x;
            arr[i] = Math.max(0, arr[i] - current_diff);
            total = total + current_diff;
        }
    }
    return total;
}
 
// Driver code
let X = 1;
let arr = [ 1, 6, 1, 2, 0, 4 ];
let N = arr.length;
document.write(MinOperations(N, X, arr)+"<br>");
 
// This code is contributed by rag2127
</script>


Output: 

11

 

Time complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments