Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AIProgram to calculate area of a parallelogram

Program to calculate area of a parallelogram

Given integers A and B denoting the length of sides of a parallelogram and Y that is the angle between the sides and length of diagonals D1 and D2 of the parallelogram and an angle 0 at the intersection of the diagonal, the task is to find the area of the parallelogram from the information provided.

A parallelogram is a type of quadrilateral that has equal and parallel opposite sides and angle between them is not right angle.

Examples:

Input: A = 6, B = 10, 0 = 30
Output: 18.48
Explanation:
For the given sides 6 and 10 and for the angle 30 degree the area of parallelogram will be 18.48.

Input: A = 3, B = 5, Y = 45
Output: 10.61
Explanation:
For the given sides 3 and 5 and for the angle 45 degree the length of diagonal will be 10.61.

Input: D1 = 3, D2 = 5, 0 = 90
Output: 7.5
Explanation:
For the given diagonals 3 and 5 and for the angle 90 degree the area of parallelogram will be 7.5.

Approach: The area of the parallelogram can be calculated by the following three formulas:

  • From given sides A and B and the angle between the diagonals, the area of the parallelogram can be calculated by the following formula:

 Area of Parallelogram for sides and angle between diagonals = ((A2 – B2) * tan 0) / 2

  • From given sides A and B and the angle between the sides, the area of the parallelogram is can be calculated by the following formula: 
     

Area of Parallelogram for sides and angle between sides = A * B * sin Y
 

  • From the given length of diagonals D1 and D2 and the angle between them, the area of the parallelogram can be calculated by the following formula: 
     

Area of Parallelogram for diagonals and angle between diagonals = (D1 * D2 * sin 0)/2

Below is the implementation of the above approach:

C++




// C++ program for the
// above approach
#include <bits/stdc++.h>
using namespace std;
 
double toRadians(int degree)
{
  double pi = 3.14159265359;
  return ((double)degree * (pi / 180));
}
 
// Function to return the area of
// parallelogram using sides and
// angle at the intersection of diagonal
double Area_Parallelogram1(int a, int b,
                           int theta)
{
  
    // Calculate area of parallelogram
    double area = (abs(tan(toRadians(theta))) / 2) *
                   abs(a * a - b * b);
  
    // Return the answer
    return area;
}
  
// Function to return the area of
// parallelogram using sides and
// angle at the intersection of sides
double Area_Parallelogram2(int a, int b,
                           int gamma)
{    
  // Calculate area of parallelogram
  double area = (abs(sin(toRadians(gamma)))) *
                 abs(a * b);
 
  // Return the answer
  return area;
}
  
// Function to return the area of
// parallelogram using diagonals and
// angle at the intersection of diagonals
static double Area_Parallelogram3(int d1, int d2,
                                  int theta)
{    
  // Calculate area of parallelogram
  double area = (abs(sin(toRadians(theta))) / 2) *
                 abs(d1 * d2);
 
  // Return the answer
  return area;
}
 
  
// Driver Code
int main()
{
  // Given diagonal and angle
  int d1 = 3;
  int d2 = 5;
  int theta = 90;
 
  // Function call
  double area = Area_Parallelogram3(d1,
                                    d2,
                                    theta);
   
  // Print the area
  printf("%.2f", area);
}
 
// This code is contributed by rutvik_56


Java




// Java program for above approach
import java.io.*;
 
class GFG{
 
// Function to return the area of
// parallelogram using sides and
// angle at the intersection of diagonal
static double Area_Parallelogram1(int a, int b,
                                  int theta)
{
 
    // Calculate area of parallelogram
    double area = (Math.abs(Math.tan(
                   Math.toRadians(theta))) / 2) *
                   Math.abs(a * a - b * b);
 
    // Return the answer
    return area;
}
 
// Function to return the area of
// parallelogram using sides and
// angle at the intersection of sides
static double Area_Parallelogram2(int a, int b,
                                  int gamma)
{
     
    // Calculate area of parallelogram
    double area = (Math.abs(Math.sin(
                   Math.toRadians(gamma)))) *
                   Math.abs(a * b);
 
    // Return the answer
    return area;
}
 
// Function to return the area of
// parallelogram using diagonals and
// angle at the intersection of diagonals
static double Area_Parallelogram3(int d1, int d2,
                                  int theta)
{
     
    // Calculate area of parallelogram
    double area = (Math.abs(Math.sin(
                   Math.toRadians(theta))) / 2) *
                   Math.abs(d1 * d2);
 
    // Return the answer
    return area;
}
 
// Driver code
public static void main (String[] args)
{
     
    // Given diagonal and angle
    int d1 = 3;
    int d2 = 5;
    int theta = 90;
     
    // Function call
    double area = Area_Parallelogram3(
                  d1, d2, theta);
     
    // Print the area
    System.out.format("%.2f", area);
}
}
 
// This code is contributed by offbeat


Python3




# Python3 program for the above approach
 
import math
 
# Function to return the area of
# parallelogram using sides and
# angle at the intersection of diagonal
def Area_Parallelogram1(a, b, theta):
 
    # Calculate area of parallelogram
    area = (abs(math.tan(math.radians(theta)))/2) \
           * abs(a**2 - b**2)
 
    # Return the answer
    return area
 
# Function to return the area of
# parallelogram using sides and
# angle at the intersection of sides
def Area_Parallelogram2(a, b, gamma):
 
    # Calculate area of parallelogram
    area = (abs(math.sin(math.radians(gamma)))) \
            * abs(a * b)
 
    # Return the answer
    return area
 
# Function to return the area of
# parallelogram using diagonals and
# angle at the intersection of diagonals
def Area_Parallelogram3(d1, d2, theta):
 
    # Calculate area of parallelogram
    area = (abs(math.sin(math.radians(theta)))/2) \
            * abs(d1 * d2)
 
    # Return the answer
    return area
 
 
# Driver Code
 
# Given diagonal and angle
d1 = 3
d2 = 5
theta = 90
 
# Function Call
area = Area_Parallelogram3(d1, d2, theta)
# Print the area
print(round(area, 2))


C#




// C# program for
// the above approach
using System;
class GFG{
 
// Function to return the area of
// parallelogram using sides and
// angle at the intersection of diagonal
static double Area_Parallelogram1(int a, int b,
                                  int theta)
{
  // Calculate area of parallelogram
  double area = (Math.Abs(Math.Tan((theta *
                          Math.PI) / 180)) / 2) *
                 Math.Abs(a * a - b * b);
 
  // Return the answer
  return area;
}
 
// Function to return the area of
// parallelogram using sides and
// angle at the intersection of sides
static double Area_Parallelogram2(int a, int b,
                                  int gamma)
{   
  // Calculate area of parallelogram
  double area = (Math.Abs(Math.Sin((gamma *
                          Math.PI) / 180))) *
                 Math.Abs(a * b);
 
  // Return the answer
  return area;
}
 
// Function to return the area of
// parallelogram using diagonals and
// angle at the intersection of diagonals
static double Area_Parallelogram3(int d1, int d2,
                                  int theta)
{   
  // Calculate area of parallelogram
  double area = (Math.Abs(Math.Sin((theta *
                          Math.PI) / 180)) / 2) *
                 Math.Abs(d1 * d2);
 
  // Return the answer
  return area;
}
 
// Driver code
public static void Main(String[] args)
{
  // Given diagonal and angle
  int d1 = 3;
  int d2 = 5;
  int theta = 90;
 
  // Function call
  double area = Area_Parallelogram3(d1, d2, theta);
 
  // Print the area
  Console.Write("{0:F2}", area);
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// Javascript program for the
// above approach
function toRadians(degree)
{
    let pi = 3.14159265359;
    return (degree * (pi / 180));
}
 
// Function to return the area of
// parallelogram using sides and
// angle at the intersection of diagonal
function Area_Parallelogram1(a, b,
                             theta)
{
     
    // Calculate area of parallelogram
    let area = (Math.abs(Math.tan(toRadians(theta))) / 2) *
                Math.abs(a * a - b * b);
 
    // Return the answer
    return area;
}
 
// Function to return the area of
// parallelogram using sides and
// angle at the intersection of sides
function Area_Parallelogram2(a, b,
                             gamma)
{   
     
    // Calculate area of parallelogram
    let area = (Math.abs(Math.sin(toRadians(gamma)))) *
                         Math.abs(a * b);
     
    // Return the answer
    return area;
}
 
// Function to return the area of
// parallelogram using diagonals and
// angle at the intersection of diagonals
function Area_Parallelogram3(d1, d2,
                             theta)
{   
     
    // Calculate area of parallelogram
    let area = (Math.abs(Math.sin(toRadians(theta))) / 2) *
                         Math.abs(d1 * d2);
     
    // Return the answer
    return area;
}
 
// Driver Code
 
// Given diagonal and angle
let d1 = 3;
let d2 = 5;
let theta = 90;
 
// Function call
let area = Area_Parallelogram3(d1, d2,
                               theta);
 
// Print the area
document.write(area);
 
// This code is contributed by Mayank Tyagi
     
</script>


Output: 

7.5

 

Time Complexity: O(1)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments