Given integers A and B denoting the length of sides of a parallelogram and Y that is the angle between the sides and length of diagonals D1 and D2 of the parallelogram and an angle 0 at the intersection of the diagonal, the task is to find the area of the parallelogram from the information provided.
A parallelogram is a type of quadrilateral that has equal and parallel opposite sides and angle between them is not right angle.
Examples:
Input: A = 6, B = 10,
0= 30
Output: 18.48
Explanation:
For the given sides 6 and 10 and for the angle 30 degree the area of parallelogram will be 18.48.Input: A = 3, B = 5,
Y= 45
Output: 10.61
Explanation:
For the given sides 3 and 5 and for the angle 45 degree the length of diagonal will be 10.61.Input: D1 = 3, D2 = 5,
0= 90
Output: 7.5
Explanation:
For the given diagonals 3 and 5 and for the angle 90 degree the area of parallelogram will be 7.5.
Approach: The area of the parallelogram can be calculated by the following three formulas:
- From given sides A and B and the angle between the diagonals, the area of the parallelogram can be calculated by the following formula:
Area of Parallelogram for sides and angle between diagonals = ((A2 – B2) * tan
0) / 2
- From given sides A and B and the angle between the sides, the area of the parallelogram is can be calculated by the following formula:
Area of Parallelogram for sides and angle between sides = A * B * sin
Y
- From the given length of diagonals D1 and D2 and the angle between them, the area of the parallelogram can be calculated by the following formula:
Area of Parallelogram for diagonals and angle between diagonals = (D1 * D2 * sin
0)/2
Below is the implementation of the above approach:
C++
// C++ program for the // above approach #include <bits/stdc++.h> using namespace std; double toRadians( int degree) { double pi = 3.14159265359; return (( double )degree * (pi / 180)); } // Function to return the area of // parallelogram using sides and // angle at the intersection of diagonal double Area_Parallelogram1( int a, int b, int theta) { // Calculate area of parallelogram double area = ( abs ( tan (toRadians(theta))) / 2) * abs (a * a - b * b); // Return the answer return area; } // Function to return the area of // parallelogram using sides and // angle at the intersection of sides double Area_Parallelogram2( int a, int b, int gamma) { // Calculate area of parallelogram double area = ( abs ( sin (toRadians(gamma)))) * abs (a * b); // Return the answer return area; } // Function to return the area of // parallelogram using diagonals and // angle at the intersection of diagonals static double Area_Parallelogram3( int d1, int d2, int theta) { // Calculate area of parallelogram double area = ( abs ( sin (toRadians(theta))) / 2) * abs (d1 * d2); // Return the answer return area; } // Driver Code int main() { // Given diagonal and angle int d1 = 3; int d2 = 5; int theta = 90; // Function call double area = Area_Parallelogram3(d1, d2, theta); // Print the area printf ( "%.2f" , area); } // This code is contributed by rutvik_56 |
Java
// Java program for above approach import java.io.*; class GFG{ // Function to return the area of // parallelogram using sides and // angle at the intersection of diagonal static double Area_Parallelogram1( int a, int b, int theta) { // Calculate area of parallelogram double area = (Math.abs(Math.tan( Math.toRadians(theta))) / 2 ) * Math.abs(a * a - b * b); // Return the answer return area; } // Function to return the area of // parallelogram using sides and // angle at the intersection of sides static double Area_Parallelogram2( int a, int b, int gamma) { // Calculate area of parallelogram double area = (Math.abs(Math.sin( Math.toRadians(gamma)))) * Math.abs(a * b); // Return the answer return area; } // Function to return the area of // parallelogram using diagonals and // angle at the intersection of diagonals static double Area_Parallelogram3( int d1, int d2, int theta) { // Calculate area of parallelogram double area = (Math.abs(Math.sin( Math.toRadians(theta))) / 2 ) * Math.abs(d1 * d2); // Return the answer return area; } // Driver code public static void main (String[] args) { // Given diagonal and angle int d1 = 3 ; int d2 = 5 ; int theta = 90 ; // Function call double area = Area_Parallelogram3( d1, d2, theta); // Print the area System.out.format( "%.2f" , area); } } // This code is contributed by offbeat |
Python3
# Python3 program for the above approach import math # Function to return the area of # parallelogram using sides and # angle at the intersection of diagonal def Area_Parallelogram1(a, b, theta): # Calculate area of parallelogram area = ( abs (math.tan(math.radians(theta))) / 2 ) \ * abs (a * * 2 - b * * 2 ) # Return the answer return area # Function to return the area of # parallelogram using sides and # angle at the intersection of sides def Area_Parallelogram2(a, b, gamma): # Calculate area of parallelogram area = ( abs (math.sin(math.radians(gamma)))) \ * abs (a * b) # Return the answer return area # Function to return the area of # parallelogram using diagonals and # angle at the intersection of diagonals def Area_Parallelogram3(d1, d2, theta): # Calculate area of parallelogram area = ( abs (math.sin(math.radians(theta))) / 2 ) \ * abs (d1 * d2) # Return the answer return area # Driver Code # Given diagonal and angle d1 = 3 d2 = 5 theta = 90 # Function Call area = Area_Parallelogram3(d1, d2, theta) # Print the area print ( round (area, 2 )) |
C#
// C# program for // the above approach using System; class GFG{ // Function to return the area of // parallelogram using sides and // angle at the intersection of diagonal static double Area_Parallelogram1( int a, int b, int theta) { // Calculate area of parallelogram double area = (Math.Abs(Math.Tan((theta * Math.PI) / 180)) / 2) * Math.Abs(a * a - b * b); // Return the answer return area; } // Function to return the area of // parallelogram using sides and // angle at the intersection of sides static double Area_Parallelogram2( int a, int b, int gamma) { // Calculate area of parallelogram double area = (Math.Abs(Math.Sin((gamma * Math.PI) / 180))) * Math.Abs(a * b); // Return the answer return area; } // Function to return the area of // parallelogram using diagonals and // angle at the intersection of diagonals static double Area_Parallelogram3( int d1, int d2, int theta) { // Calculate area of parallelogram double area = (Math.Abs(Math.Sin((theta * Math.PI) / 180)) / 2) * Math.Abs(d1 * d2); // Return the answer return area; } // Driver code public static void Main(String[] args) { // Given diagonal and angle int d1 = 3; int d2 = 5; int theta = 90; // Function call double area = Area_Parallelogram3(d1, d2, theta); // Print the area Console.Write( "{0:F2}" , area); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Javascript program for the // above approach function toRadians(degree) { let pi = 3.14159265359; return (degree * (pi / 180)); } // Function to return the area of // parallelogram using sides and // angle at the intersection of diagonal function Area_Parallelogram1(a, b, theta) { // Calculate area of parallelogram let area = (Math.abs(Math.tan(toRadians(theta))) / 2) * Math.abs(a * a - b * b); // Return the answer return area; } // Function to return the area of // parallelogram using sides and // angle at the intersection of sides function Area_Parallelogram2(a, b, gamma) { // Calculate area of parallelogram let area = (Math.abs(Math.sin(toRadians(gamma)))) * Math.abs(a * b); // Return the answer return area; } // Function to return the area of // parallelogram using diagonals and // angle at the intersection of diagonals function Area_Parallelogram3(d1, d2, theta) { // Calculate area of parallelogram let area = (Math.abs(Math.sin(toRadians(theta))) / 2) * Math.abs(d1 * d2); // Return the answer return area; } // Driver Code // Given diagonal and angle let d1 = 3; let d2 = 5; let theta = 90; // Function call let area = Area_Parallelogram3(d1, d2, theta); // Print the area document.write(area); // This code is contributed by Mayank Tyagi </script> |
7.5
Time Complexity: O(1)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!