Saturday, January 18, 2025
Google search engine
HomeData Modelling & AIFind the missing number in unordered Arithmetic Progression

Find the missing number in unordered Arithmetic Progression

Given an unsorted array arr[] of N integers that are in Arithmetic Progression, the task is to print the missing element from the given series.

Examples: 

Input: arr[] = {12, 3, 6, 15, 18} 
Output:
Explanation: 
The elements given in order are: 3, 6, 12, 15, 18. 
Hence missing element is 9.

Input: arr[] = {2, 8, 6, 10} 
Output:
Explanation: 
The elements given in order are: 2, 6, 8, 10. 
Hence missing element is 4.

Naive Approach: The idea is to use Binary Search. Sort the given array then the array will arranged in sorted order of AP series, we can apply Binary Search (as in this article) as described below: 

  1. Find the middle element and check if the difference between the middle element and the next element to the middle element is equal to common difference or not, if not then the missing element lies between mid and mid + 1.
  2. If the middle element is equal to (N/2)th term in the given Arithmetic Series, then the missing element lies in the right side of the middle element.
  3. Else the element lies in the left side of the middle element.

Below is the implementation of the above approach:  

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the missing element
int findMissing(int arr[], int left,
                int right, int diff)
{
 
    // Fix left and right boundary
    // for binary search
    if (right <= left)
        return INT_MAX;
 
    // Find index of middle element
    int mid = left + (right - left) / 2;
 
    // Check if the element just after
    // the middle element is missing
    if (arr[mid + 1] - arr[mid] != diff)
        return (arr[mid] + diff);
 
    // Check if the element just
    // before mid is missing
    if (mid > 0
        && arr[mid] - arr[mid - 1] != diff)
        return (arr[mid - 1] + diff);
 
    // Check if the elements till mid
    // follow the AP, then recur
    // for right half
    if (arr[mid] == arr[0] + mid * diff)
        return findMissing(arr, mid + 1,
                           right, diff);
 
    // Else recur for left half
    return findMissing(arr, left,
                       mid - 1, diff);
}
 
// Function to find the missing
// element in AP series
int missingElement(int arr[], int n)
{
 
    // Sort the array arr[]
    sort(arr, arr + n);
 
    // Calculate Common Difference
    int diff = (arr[n - 1] - arr[0]) / n;
 
    // Binary search for the missing
    return findMissing(arr, 0, n - 1, diff);
}
 
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 2, 8, 6, 10 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    cout << missingElement(arr, n);
    return 0;
}


Java




// Java program for the above approach
import java.util.Arrays;
class GFG{
     
// Function to find the missing element
static int findMissing(int arr[], int left,
                       int right, int diff)
{
 
    // Fix left and right boundary
    // for binary search
    if (right <= left)
        return 0;
 
    // Find index of middle element
    int mid = left + (right - left) / 2;
 
    // Check if the element just after
    // the middle element is missing
    if (arr[mid + 1] - arr[mid] != diff)
        return (arr[mid] + diff);
 
    // Check if the element just
    // before mid is missing
    if (mid > 0 &&
        arr[mid] - arr[mid - 1] != diff)
        return (arr[mid - 1] + diff);
 
    // Check if the elements till mid
    // follow the AP, then recur
    // for right half
    if (arr[mid] == arr[0] + mid * diff)
        return findMissing(arr, mid + 1,
                           right, diff);
 
    // Else recur for left half
    return findMissing(arr, left,
                       mid - 1, diff);
}
 
// Function to find the missing
// element in AP series
static int missingElement(int arr[], int n)
{
 
    // Sort the array arr[]
    Arrays.sort(arr);
 
    // Calculate Common Difference
    int diff = (arr[n - 1] - arr[0]) / n;
 
    // Binary search for the missing
    return findMissing(arr, 0, n - 1, diff);
}
 
// Driver Code
public static void main(String[] args)
{
    // Given array arr[]
    int arr[] = new int[]{ 2, 8, 6, 10 };
    int n = arr.length;
 
    // Function Call
    System.out.println(missingElement(arr, n));
}
}
 
// This code is contributed by rock_cool


Python3




# Python3 program for the above approach
import sys
 
# Function to find the missing element
def findMissing(arr, left, right, diff):
 
    # Fix left and right boundary
    # for binary search
    if (right <= left):
        return sys.maxsize
 
    # Find index of middle element
    mid = left + (right - left) // 2
 
    # Check if the element just after
    # the middle element is missing
    if (arr[mid + 1] - arr[mid] != diff):
        return (arr[mid] + diff)
 
    # Check if the element just
    # before mid is missing
    if (mid > 0 and
        arr[mid] - arr[mid - 1] != diff):
        return (arr[mid - 1] + diff)
 
    # Check if the elements till mid
    # follow the AP, then recur
    # for right half
    if (arr[mid] == arr[0] + mid * diff):
        return findMissing(arr, mid + 1,
                           right, diff)
 
    # Else recur for left half
    return findMissing(arr, left,
                       mid - 1, diff)
 
# Function to find the missing
# element in AP series
def missingElement(arr, n):
 
    # Sort the array arr[]
    arr.sort()
 
    # Calculate Common Difference
    diff = (arr[n - 1] - arr[0]) // n
 
    # Binary search for the missing
    return findMissing(arr, 0, n - 1, diff)
 
# Driver Code
 
# Given array arr[]
arr = [ 2, 8, 6, 10 ]
n = len(arr)
 
# Function call
print(missingElement(arr, n))
 
# This code is contributed by sanjoy_62


C#




// C# program for the above approach
using System;
class GFG{
     
// Function to find the missing element
static int findMissing(int []arr, int left,
                       int right, int diff)
{
 
    // Fix left and right boundary
    // for binary search
    if (right <= left)
        return 0;
 
    // Find index of middle element
    int mid = left + (right - left) / 2;
 
    // Check if the element just after
    // the middle element is missing
    if (arr[mid + 1] - arr[mid] != diff)
        return (arr[mid] + diff);
 
    // Check if the element just
    // before mid is missing
    if (mid > 0 &&
        arr[mid] - arr[mid - 1] != diff)
        return (arr[mid - 1] + diff);
 
    // Check if the elements till mid
    // follow the AP, then recur
    // for right half
    if (arr[mid] == arr[0] + mid * diff)
        return findMissing(arr, mid + 1,
                           right, diff);
 
    // Else recur for left half
    return findMissing(arr, left,
                       mid - 1, diff);
}
 
// Function to find the missing
// element in AP series
static int missingElement(int []arr, int n)
{
 
    // Sort the array []arr
    Array.Sort(arr);
 
    // Calculate Common Difference
    int diff = (arr[n - 1] - arr[0]) / n;
 
    // Binary search for the missing
    return findMissing(arr, 0, n - 1, diff);
}
 
// Driver Code
public static void Main(String[] args)
{
    // Given array []arr
    int []arr = new int[]{ 2, 8, 6, 10 };
    int n = arr.Length;
 
    // Function Call
    Console.WriteLine(missingElement(arr, n));
}
}
 
// This code is contributed by Rohit_ranjan


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to find the missing element
function findMissing(arr, left, right, diff)
{
     
    // Fix left and right boundary
    // for binary search
    if (right <= left)
        return 0;
 
    // Find index of middle element
    let mid = left + parseInt((right - left) / 2, 10);
 
    // Check if the element just after
    // the middle element is missing
    if (arr[mid + 1] - arr[mid] != diff)
        return (arr[mid] + diff);
 
    // Check if the element just
    // before mid is missing
    if (mid > 0 &&
        arr[mid] - arr[mid - 1] != diff)
        return (arr[mid - 1] + diff);
 
    // Check if the elements till mid
    // follow the AP, then recur
    // for right half
    if (arr[mid] == arr[0] + mid * diff)
        return findMissing(arr, mid + 1,
                           right, diff);
 
    // Else recur for left half
    return findMissing(arr, left,
                       mid - 1, diff);
}
 
// Function to find the missing
// element in AP series
function missingElement(arr, n)
{
 
    // Sort the array []arr
    arr.sort(function(a, b){return a - b});
 
    // Calculate Common Difference
    let diff = parseInt((arr[n - 1] -
                         arr[0]) / n, 10);
 
    // Binary search for the missing
    return findMissing(arr, 0, n - 1, diff);
}
 
// Driver code
 
// Given array []arr
let arr = [ 2, 8, 6, 10 ];
let n = arr.length;
 
// Function Call
document.write(missingElement(arr, n));
 
// This code is contributed by rameshtravel07
 
</script>


Output: 

4

 

Time Complexity: O(N*log2N)

Auxiliary Space: O(1) as it is using constant space

Efficient Approach: To optimize the above method we will use the following properties of XOR that is a ^ a = 0, hence, (a ^ b ^ c) ^ (a ^ c) = b. Below are the steps: 

  • Find the maximum and minimum elements from the given array.
  • Find the common difference as: 
     

Common Difference = \frac {(max Element - min Element)}{N}

  • Calculate xor for all elements in the array.
  • Perform xor with all the elements of the actual series to find the resultant value is the missing element.

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to get the missing element
int missingElement(int arr[], int n)
{
    // For maximum Element in the array
    int max_ele = arr[0];
 
    // For minimum Element in the array
    int min_ele = arr[0];
 
    // For xor of all elements
    int x = 0;
 
    // Common difference of AP series
    int d;
 
    // find maximum and minimum element
    for (int i = 0; i < n; i++) {
        if (arr[i] > max_ele)
            max_ele = arr[i];
 
        if (arr[i] < min_ele)
            min_ele = arr[i];
    }
 
    // Calculating common difference
    d = (max_ele - min_ele) / n;
 
    // Calculate the XOR of all elements
    for (int i = 0; i < n; i++) {
        x = x ^ arr[i];
    }
 
    // Perform XOR with actual AP series
    // resultant x will be the ans
    for (int i = 0; i <= n; i++) {
        x = x ^ (min_ele + (i * d));
    }
 
    // Return the missing element
    return x;
}
 
// Driver Code
int main()
{
    // Given array
    int arr[] = { 12, 3, 6, 15, 18 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    int element = missingElement(arr, n);
 
    // Print the missing element
    cout << element;
}


Java




// Java program for the above approach
class GFG{
     
// Function to get the missing element
static int missingElement(int arr[], int n)
{
     
    // For maximum Element in the array
    int max_ele = arr[0];
 
    // For minimum Element in the array
    int min_ele = arr[0];
 
    // For xor of all elements
    int x = 0;
 
    // Common difference of AP series
    int d;
 
    // find maximum and minimum element
    for(int i = 0; i < n; i++)
    {
       if (arr[i] > max_ele)
           max_ele = arr[i];
            
       if (arr[i] < min_ele)
           min_ele = arr[i];
    }
 
    // Calculating common difference
    d = (max_ele - min_ele) / n;
 
    // Calculate the XOR of all elements
    for(int i = 0; i < n; i++)
    {
       x = x ^ arr[i];
    }
 
    // Perform XOR with actual AP series
    // resultant x will be the ans
    for(int i = 0; i <= n; i++)
    {
       x = x ^ (min_ele + (i * d));
    }
 
    // Return the missing element
    return x;
}
 
// Driver code
public static void main(String[] args)
{
     
    // Given array
    int arr[] = new int[]{ 12, 3, 6, 15, 18 };
    int n = arr.length;
     
    // Function Call
    int element = missingElement(arr, n);
 
    // Print the missing element
    System.out.print(element);
}
}
 
// This code is contributed by Pratima Pandey


Python3




# Python3 program for the above approach
 
# Function to get the missing element
def missingElement(arr, n):
     
    # For maximum element in the array
    max_ele = arr[0]
 
    # For minimum Element in the array
    min_ele = arr[0]
 
    # For xor of all elements
    x = 0
 
    # Common difference of AP series
    d = 0
 
    # Find maximum and minimum element
    for i in range(n):
        if (arr[i] > max_ele):
            max_ele = arr[i]
 
        if (arr[i] < min_ele):
            min_ele = arr[i]
 
    # Calculating common difference
    d = (max_ele - min_ele) // n
 
    # Calculate the XOR of all elements
    for i in range(n):
        x = x ^ arr[i]
 
    # Perform XOR with actual AP series
    # resultant x will be the ans
    for i in range(n + 1):
        x = x ^ (min_ele + (i * d))
 
    # Return the missing element
    return x
 
# Driver Code
if __name__ == '__main__':
     
    # Given array
    arr = [ 12, 3, 6, 15, 18 ]
    n = len(arr)
 
    # Function Call
    element = missingElement(arr, n)
 
    # Print the missing element
    print(element)
 
# This code is contributed by mohit kumar 29


C#




// C# program for the above approach
using System;
class GFG{
     
// Function to get the missing element
static int missingElement(int[] arr, int n)
{
     
    // For maximum Element in the array
    int max_ele = arr[0];
 
    // For minimum Element in the array
    int min_ele = arr[0];
 
    // For xor of all elements
    int x = 0;
 
    // Common difference of AP series
    int d;
 
    // find maximum and minimum element
    for(int i = 0; i < n; i++)
    {
       if (arr[i] > max_ele)
           max_ele = arr[i];
            
       if (arr[i] < min_ele)
           min_ele = arr[i];
    }
 
    // Calculating common difference
    d = (max_ele - min_ele) / n;
 
    // Calculate the XOR of all elements
    for(int i = 0; i < n; i++)
    {
       x = x ^ arr[i];
    }
 
    // Perform XOR with actual AP series
    // resultant x will be the ans
    for(int i = 0; i <= n; i++)
    {
       x = x ^ (min_ele + (i * d));
    }
 
    // Return the missing element
    return x;
}
 
// Driver code
public static void Main()
{
     
    // Given array
    int[] arr = new int[]{ 12, 3, 6, 15, 18 };
    int n = arr.Length;
     
    // Function Call
    int element = missingElement(arr, n);
 
    // Print the missing element
    Console.Write(element);
}
}
 
// This code is contributed by Ritik Bansal


Javascript




<script>
 
    // Javascript program for the above approach
     
    // Function to get the missing element
    function missingElement(arr, n)
    {
        // For maximum Element in the array
        let max_ele = arr[0];
 
        // For minimum Element in the array
        let min_ele = arr[0];
 
        // For xor of all elements
        let x = 0;
 
        // Common difference of AP series
        let d;
 
        // find maximum and minimum element
        for (let i = 0; i < n; i++) {
            if (arr[i] > max_ele)
                max_ele = arr[i];
 
            if (arr[i] < min_ele)
                min_ele = arr[i];
        }
 
        // Calculating common difference
        d = parseInt((max_ele - min_ele) / n, 10);
 
        // Calculate the XOR of all elements
        for (let i = 0; i < n; i++) {
            x = x ^ arr[i];
        }
 
        // Perform XOR with actual AP series
        // resultant x will be the ans
        for (let i = 0; i <= n; i++) {
            x = x ^ (min_ele + (i * d));
        }
 
        // Return the missing element
        return x;
    }
 
    // Given array
    let arr = [ 12, 3, 6, 15, 18 ];
    let n = arr.length;
   
    // Function Call
    let element = missingElement(arr, n);
   
    // Print the missing element
    document.write(element);
     
</script>


Output: 

9

 

Time complexity: O(N) 
Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments