Wednesday, January 1, 2025
Google search engine
HomeData Modelling & AICheck if a large number is divisible by a number which is...

Check if a large number is divisible by a number which is a power of 2

Given a large number in the form of a string str and a number K, the task is to check if the number formed by string str is divisible by the K or not, where K is a power of 2. 
Examples: 
 

Input: str = “5426987513245621541524288”, num = 64 
Output: Yes 
Explanation: 
Since log2(64) = 6, so the number formed by the last 6 digits from the string str is divisible by 64 .
Input: str = “21346775656413259795656497974113461254”, num = 4 
Output: No 
Explanation: 
Since log2(4)=2, the number formed by the last 2 digits from the string str is not divisible by 4. 
 

Approach: 
Since K is a perfect power of 2. Let K can be represented as 2X. Then according to the divisibility rule of perfect power of 2, if the last X digit of the given number is divisible by K then the given number is divisible by K. Otherwise it is not divisible by K.
Below is the implementation of the above approach:
 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check divisibility
bool checkIfDivisible(string str,
                      long long int num)
{
 
    // Calculate the number of digits in num
    long long int powerOf2 = log2(num);
 
    // Check if the length of
    // the string is less than
    // the powerOf2 then
    // return false
    if (str.length() < powerOf2)
        return false;
 
    // Check if the powerOf2 is 0
    // that means the given number
    // is 1 and as every number
    // is divisible by 1 so return true
    if (powerOf2 == 0)
        return true;
 
    // Find the number which is
    // formed by the last n digits
    // of the string where n=powerOf2
    long long int i, number = 0;
    int len = str.length();
 
    for (i = len - powerOf2; i < len; i++) {
        number += (str[i] - '0')
                  * pow(10,
                        powerOf2 - 1);
        powerOf2--;
    }
 
    // Check if the number formed is
    // divisible by input num or not
    if (number % num)
        return false;
    else
        return true;
}
 
// Driver Code
int main()
{
    // Given number
    string str = "213467756564";
    long long int num = 4;
 
    // Function Call
    if (checkIfDivisible(str, num))
        cout << "Yes";
    else
        cout << "No";
 
    return 0;
}


Java




// Java program for the above approach
class GFG{
 
// Function to check divisibility
static boolean checkIfDivisible(String str,
                                long num)
{
     
    // Calculate the number of digits in num
    long powerOf2 = (int)(Math.log(num) /
                          Math.log(2));
 
    // Check if the length of
    // the string is less than
    // the powerOf2 then
    // return false
    if (str.length() < powerOf2)
        return false;
 
    // Check if the powerOf2 is 0
    // that means the given number
    // is 1 and as every number
    // is divisible by 1 so return true
    if (powerOf2 == 0)
        return true;
 
    // Find the number which is
    // formed by the last n digits
    // of the string where n=powerOf2
    long i, number = 0;
    int len = str.length();
 
    for(i = len - powerOf2; i < len; i++)
    {
        number += (str.charAt((int)i) - '0') *
                   Math.pow(10, powerOf2 - 1);
        powerOf2--;
    }
 
    // Check if the number formed is
    // divisible by input num or not
    if (number % num != 0)
        return false;
    else
        return true;
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given number
    String str = "213467756564";
    long num = 4;
     
    // Function call
    if (checkIfDivisible(str, num))
        System.out.print("Yes");
    else
        System.out.print("No");
}
}
 
// This code is contributed by rutvik_56


Python3




# Python3 program for the above approach
from math import log2
 
# Function to check divisibility
def checkIfDivisible(string, num):
 
    # Calculate the number of digits in num
    powerOf2 = int(log2(num));
 
    # Check if the length of
    # the string is less than
    # the powerOf2 then
    # return false
    if (len(string) < powerOf2):
        return False;
 
    # Check if the powerOf2 is 0
    # that means the given number
    # is 1 and as every number
    # is divisible by 1 so return true
    if (powerOf2 == 0):
        return True;
 
    # Find the number which is
    # formed by the last n digits
    # of the string where n=powerOf2
    number = 0;
    length = len(string);
 
    for i in range(length - powerOf2, length):
        number += ((ord(string[i]) - ord('0')) *
                  (10 ** (powerOf2 - 1)));
         
        powerOf2 -= 1;
 
    # Check if the number formed is
    # divisible by input num or not
    if (number % num):
        return False;
    else :
        return True;
 
# Driver Code
if __name__ == "__main__" :
 
    # Given number
    string = "213467756564";
    num = 4;
 
    # Function Call
    if (checkIfDivisible(string, num)):
        print("Yes");
    else :
        print("No");
 
# This code is contributed by AnkitRai01


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to check divisibility
static bool checkIfDivisible(String str,
                             long num)
{
     
    // Calculate the number of digits in num
    long powerOf2 = (int)(Math.Log(num) /
                          Math.Log(2));
 
    // Check if the length of
    // the string is less than
    // the powerOf2 then
    // return false
    if (str.Length < powerOf2)
        return false;
 
    // Check if the powerOf2 is 0
    // that means the given number
    // is 1 and as every number
    // is divisible by 1 so return true
    if (powerOf2 == 0)
        return true;
 
    // Find the number which is
    // formed by the last n digits
    // of the string where n=powerOf2
    long i, number = 0;
    int len = str.Length;
 
    for(i = len - powerOf2; i < len; i++)
    {
        number += (long)((str[(int)i] - '0') *
                Math.Pow(10, powerOf2 - 1));
        powerOf2--;
    }
 
    // Check if the number formed is
    // divisible by input num or not
    if (number % num != 0)
        return false;
    else
        return true;
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // Given number
    String str = "213467756564";
    long num = 4;
     
    // Function call
    if (checkIfDivisible(str, num))
        Console.Write("Yes");
    else
        Console.Write("No");
}
}
 
// This code is contributed by amal kumar choubey


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to check divisibility
function checkIfDivisible(str, num)
{
     
    // Calculate the number of digits in num
    let powerOf2 = (Math.log(num) /
                          Math.log(2));
 
    // Check if the length of
    // the string is less than
    // the powerOf2 then
    // return false
    if (str.length < powerOf2)
        return false;
 
    // Check if the powerOf2 is 0
    // that means the given number
    // is 1 and as every number
    // is divisible by 1 so return true
    if (powerOf2 == 0)
        return true;
 
    // Find the number which is
    // formed by the last n digits
    // of the string where n=powerOf2
    let i, number = 0;
    let len = str.length;
 
    for(i = len - powerOf2; i < len; i++)
    {
        number += (str[i] - '0') *
                   Math.pow(10, powerOf2 - 1);
        powerOf2--;
    }
 
    // Check if the number formed is
    // divisible by input num or not
    if (number % num != 0)
        return false;
    else
        return true;
}
 
// Driver Code
     
    // Given number
    let str = "213467756564";
    let num = 4;
     
    // Function call
    if (checkIfDivisible(str, num))
        document.write("Yes");
    else
        document.write("No");
   
</script>


Output: 

Yes

 

Time Complexity: O(Len), where Len is the length of the string. 
Auxiliary Space: O(log2K)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments