Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIFind the winner of a game of removing at most 3 stones...

Find the winner of a game of removing at most 3 stones from a pile in each turn

Given an array arr[] of size N, denoting values assigned to N stones, two players, Player1 and Player2, play a game of alternating turns. In each turn, a player can take 1, 2, or 3 stones from the first remaining stones with the sum of values of all the removed stones added to the player’s score. Considering that both players play optimally, the task is to print the winner of the game. If both players end the game with the same score, print “Tie”.

Examples:

Input: arr[] = {1, 2, 3, 7}
Output: Player2
Explanation: Player1 will always lose in an optimal scenario.

Input: arr[] = {1, 2, 3, -9}
Output: Player1
Explanation: Player1 must choose all the three piles at the first move to win and leave Player2 with negative score.
If Player1 chooses only one stone his score will be 1 and the next move Player2 score becomes 5. 
The next move Player1 will take the stone with value = -9 and lose.
If Player1 chooses two piles his score will be 3 and the next move Player2 score becomes 3. 
The next move Player1 will take the stone with value = -9 and also lose.

Naive Approach: The simple approach is to pick the number of stones that will maximize the total sum of the stone’s values. As both players play optimally and Player1 starts the game, Player1 picks either 1 or 2 or 3 stones and the remaining stones passed to the next player. Therefore, the score of Player2 must be subtracted from score of Player1. The idea is to use recursion to solve the problem. Let the maximum score of Player1 be res which is obtained after the recursive calls.

  • If the result, res > 0, Player1 wins
  • If the result, res < 0, Player2 wins
  • If the result, res == 0, then it is a tie.

The recursive tree looks like this, where some subproblems are repeated many times.

Follow the steps to solve the problem:

  • Declare a recursive function, say maxScore(i), to calculate the maximum score of Player1 if the game starts at index i
    • If the value of i ≥ n, return 0.
    • Initialize a variable, say score as INT_MIN, to store the maximum score of Player1
      • Picks 1 stone: score = max(score, arr[i] – maxScore(i + 1))
      • Picks 2 stones i.e (i + 1 < N): score = max(score, arr[i] + arr[i + 1] – maxScore(i + 2))
      • Picks 3 stones i.e (i + 2 < N): score = max(score, arr[i] + arr[i + 1] + arr[i + 2] – maxScore(i + 3))
    • Return the value of the score.
  • Store the value of maxScore(0) in a variable res.
  • If the value of res>0, print “Player1”, if res<0, print “Player2”, otherwise print “Tie”.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum score of Player1
int maximumStonesUtil(int* arr, int n, int i)
{
    // Base Case
    if (i >= n)
        return 0;
 
    // Variable to store maximum score
    int ans = INT_MIN;
 
    // Pick one stone
    ans = max(ans,
              arr[i] - maximumStonesUtil(arr, n, i + 1));
 
    // Pick 2 stones
    if (i + 1 < n)
        ans = max(ans,
                  arr[i] + arr[i + 1]
                      - maximumStonesUtil(arr, n, i + 2));
 
    // Pick 3 stones
    if (i + 2 < n)
        ans = max(ans,
                  arr[i] + arr[i + 1] + arr[i + 2]
                      - maximumStonesUtil(arr, n, i + 3));
 
    // Return the score of the player
    return ans;
}
 
// Function to find the winner of the game
string maximumStones(int* arr, int n)
{
    // Store the result
    int res = maximumStonesUtil(arr, n, 0);
 
    // Player 1 wins
    if (res > 0)
        return "Player1";
 
    // PLayer 2 wins
    else if (res < 0)
        return "Player2";
 
    // Tie
    else
        return "Tie";
}
 
// Driver Code
int main()
{
    // Given Input
    int arr[] = { 1, 2, 3, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    cout << maximumStones(arr, n);
 
    return 0;
}


Java




// Java program for the above approach
class GFG{
 
// Function to find the maximum score of Player1
static int maximumStonesUtil(int[] arr, int n,
                             int i)
{
     
    // Base Case
    if (i >= n)
        return 0;
 
    // Variable to store maximum score
    int ans = Integer.MIN_VALUE;
 
    // Pick one stone
    ans = Math.max(ans, arr[i] - maximumStonesUtil(
                     arr, n, i + 1));
 
    // Pick 2 stones
    if (i + 1 < n)
        ans = Math.max(ans, arr[i] + arr[i + 1] -
               maximumStonesUtil(arr, n, i + 2));
 
    // Pick 3 stones
    if (i + 2 < n)
        ans = Math.max(
            ans,
            arr[i] + arr[i + 1] + arr[i + 2]
                - maximumStonesUtil(arr, n, i + 3));
 
    // Return the score of the player
    return ans;
}
 
// Function to find the winner of the game
static String maximumStones(int[] arr, int n)
{
     
    // Store the result
    int res = maximumStonesUtil(arr, n, 0);
 
    // Player 1 wins
    if (res > 0)
        return "Player1";
 
    // PLayer 2 wins
    else if (res < 0)
        return "Player2";
 
    // Tie
    else
        return "Tie";
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 1, 2, 3, 7 };
    int n = arr.length;
 
    // Function Call
    System.out.println(maximumStones(arr, n));
}
}
 
// This code is contributed by abhinavjain194


Python3




# Python3 program for the above approach
import sys
 
# Function to find the maximum score of Player1
def maximumStonesUtil(arr, n, i):
     
    # Base Case
    if (i >= n):
        return 0
 
    # Variable to store maximum score
    ans = -sys.maxsize-1;
 
    # Pick one stone
    ans = max(
        ans, arr[i] - maximumStonesUtil(
                       arr, n, i + 1))
 
    # Pick 2 stones
    if (i + 1 < n):
        ans = max(
            ans, arr[i] + arr[i + 1]- maximumStonesUtil(
                      arr, n, i + 2))
 
    # Pick 3 stones
    if (i + 2 < n):
        ans = max(
            ans, arr[i] + arr[i + 1] + arr[i + 2]-
                 maximumStonesUtil(arr, n, i + 3));
 
    # Return the score of the player
    return ans
 
# Function to find the winner of the game
def maximumStones(arr, n):
     
    # Store the result
    res = maximumStonesUtil(arr, n, 0)
 
    # Player 1 wins
    if (res > 0):
        return "Player1"
 
    # PLayer 2 wins
    elif(res < 0):
        return "Player2"
 
    # Tie
    else:
        return "Tie"
 
# Driver Code
if __name__ == '__main__':
     
    # Given Input
    arr = [ 1, 2, 3, 7 ]
    n = len(arr)
 
    # Function Call
    print(maximumStones(arr, n))
 
# This code is contributed by SURENDRA_GANGWAR


C#




// C# program for the above approach
using System;
         
class GFG
{
 
// Function to find the maximum score of Player1
static int maximumStonesUtil(int[] arr, int n,
                             int i)
{
     
    // Base Case
    if (i >= n)
        return 0;
 
    // Variable to store maximum score
    int ans = Int32.MinValue;
 
    // Pick one stone
    ans = Math.Max(ans, arr[i] - maximumStonesUtil(
                     arr, n, i + 1));
 
    // Pick 2 stones
    if (i + 1 < n)
        ans = Math.Max(ans, arr[i] + arr[i + 1] -
               maximumStonesUtil(arr, n, i + 2));
 
    // Pick 3 stones
    if (i + 2 < n)
        ans = Math.Max(
            ans,
            arr[i] + arr[i + 1] + arr[i + 2]
                - maximumStonesUtil(arr, n, i + 3));
 
    // Return the score of the player
    return ans;
}
 
// Function to find the winner of the game
static String maximumStones(int[] arr, int n)
{
     
    // Store the result
    int res = maximumStonesUtil(arr, n, 0);
 
    // Player 1 wins
    if (res > 0)
        return "Player1";
 
    // PLayer 2 wins
    else if (res < 0)
        return "Player2";
 
    // Tie
    else
        return "Tie";
}
     
// Driver Code
public static void Main()
{
    int[] arr = { 1, 2, 3, 7 };
    int n = arr.Length;
 
    // Function Call
    Console.WriteLine(maximumStones(arr, n));
 
}
}
 
// This code is contributed by code_hunt.


Javascript




<script>
    // Javascript program for the above approach
     
    // Function to find the maximum score of Player1
    function maximumStonesUtil(arr, n, i)
    {
 
        // Base Case
        if (i >= n)
            return 0;
 
        // Variable to store maximum score
        let ans = Number.MIN_VALUE;
 
        // Pick one stone
        ans = Math.max(ans, arr[i] - maximumStonesUtil(arr, n, i + 1));
 
        // Pick 2 stones
        if (i + 1 < n)
            ans = Math.max(ans, arr[i] + arr[i + 1] - maximumStonesUtil(arr, n, i + 2));
 
        // Pick 3 stones
        if (i + 2 < n)
            ans = Math.max(
                ans,
                arr[i] + arr[i + 1] + arr[i + 2]
                    - maximumStonesUtil(arr, n, i + 3));
 
        // Return the score of the player
        return ans;
    }
 
    // Function to find the winner of the game
    function maximumStones(arr, n)
    {
 
        // Store the result
        let res = maximumStonesUtil(arr, n, 0);
 
        // Player 1 wins
        if (res < 0)
            return "Player1";
 
        // PLayer 2 wins
        else if (res > 0)
            return "Player2";
 
        // Tie
        else
            return "Tie";
    }
     
    let arr = [ 1, 2, 3, 7 ];
    let n = arr.length;
  
    // Function Call
    document.write(maximumStones(arr, n));
 
// This code is contributed by rameshtravel07.
</script>


Output

Player2




Time Complexity: O(3N)
Auxiliary Space: O(N)

Efficient Approach: To optimize the above approach, the idea is to use dynamic programming. The given problem has optimal substructure property and overlapping subproblems. Use memoization by creating a 1D table, dp of size N to store the results of the recursive calls. 

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum score of Player 1
int maximumStonesUtil(int* arr, int n, int i,
                      vector<int>& dp)
{
    // Base Case
    if (i >= n)
        return 0;
 
    int& ans = dp[i];
 
    // If the result is already computed, then
    // return the result
    if (ans != -1)
        return ans;
 
    // Variable to store maximum score
    ans = INT_MIN;
 
    // Pick one stone
    ans = max(
        ans, arr[i] - maximumStonesUtil(arr, n, i + 1, dp));
 
    // Pick 2 stones
    if (i + 1 < n)
        ans = max(ans, arr[i] + arr[i + 1]
                           - maximumStonesUtil(arr, n,
                                               i + 2, dp));
 
    // Pick 3 stones
    if (i + 2 < n)
        ans = max(ans, arr[i] + arr[i + 1] + arr[i + 2]
                           - maximumStonesUtil(arr, n,
                                               i + 3, dp));
 
    // Return the score of the player
    return ans;
}
 
// Function to find the winner of the game
string maximumStones(int* arr, int n)
{
    // Create a 1D table, dp of size N
    vector<int> dp(n, -1);
 
    // Store the result
    int res = maximumStonesUtil(arr, n, 0, dp);
 
    // Player 1 wins
    if (res > 0)
        return "Player1";
 
    // PLayer 2 wins
    else if (res < 0)
        return "Player2";
 
    // Tie
    else
        return "Tie";
}
 
// Driver Code
int main()
{
    // Given Input
    int arr[] = { 1, 2, 3, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    cout << maximumStones(arr, n);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG
{
    static int ans = 0;
   
// Function to find the maximum score of Player 1
static int maximumStonesUtil(int[] arr, int n, int i,
                      int[] dp)
{
    // Base Case
    if (i >= n)
        return 0;
 
    ans = dp[i];
 
    // If the result is already computed, then
    // return the result
    if (ans != -1)
        return ans;
 
    // Variable to store maximum score
    ans = Integer.MIN_VALUE;
 
    // Pick one stone
    ans = Math.max(
        ans, arr[i] - maximumStonesUtil(arr, n, i + 1, dp));
 
    // Pick 2 stones
    if (i + 1 < n)
        ans = Math.max(ans, arr[i] + arr[i + 1]
                           - maximumStonesUtil(arr, n,
                                               i + 2, dp));
 
    // Pick 3 stones
    if (i + 2 < n)
        ans = Math.max(ans, arr[i] + arr[i + 1] + arr[i + 2]
                           - maximumStonesUtil(arr, n,
                                               i + 3, dp));
 
    // Return the score of the player
    return ans;
}
 
// Function to find the winner of the game
static String maximumStones(int []arr, int n)
{
    // Create a 1D table, dp of size N
    int []dp = new int[n];
    Arrays.fill(dp, -1);
 
    // Store the result
    int res = maximumStonesUtil(arr, n, 0, dp);
 
    // Player 1 wins
    if (res > 0)
        return "Player1";
 
    // PLayer 2 wins
    else if (res < 0)
        return "Player2";
 
    // Tie
    else
        return "Tie";
}
 
// Driver Code
public static void main(String[] args)
{
    // Given Input
    int arr[] = { 1, 2, 3, 7 };
    int n = arr.length;
 
    // Function Call
    System.out.print(maximumStones(arr, n));
 
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python program for the above approach
 
# Function to find the maximum score of Player 1
def maximumStonesUtil(arr, n, i, dp):
   
    # Base Case
    if (i >= n):
        return 0
     
    ans = dp[i]
     
    # If the result is already computed, then
    # return the result
    if (ans != -1):
        return ans
         
    # Variable to store maximum score
    ans = -2**31
     
    # Pick one stone
    ans = max( ans, arr[i] - maximumStonesUtil(arr, n, i + 1, dp))
     
    # Pick 2 stones
    if (i + 1 < n):
        ans = max(ans, arr[i] + arr[i + 1] - maximumStonesUtil(arr, n, i + 2, dp))
         
    # Pick 3 stones
    if (i + 2 < n):
        ans = max(ans, arr[i] + arr[i + 1] + arr[i + 2] - maximumStonesUtil(arr, n, i + 3, dp))
     
    # Return the score of the player
    return ans
 
 
# Function to find the winner of the game
def maximumStones(arr, n):
    # Create a 1D table, dp of size N
    dp =[-1]*n
     
    # Store the result
    res = maximumStonesUtil(arr, n, 0, dp)
     
    # Player 1 wins
    if (res > 0):
        return "Player1"
         
    # PLayer 2 wins
    elif (res < 0):
        return "Player2"
         
    # Tie
    else:
        return "Tie"
 
# Driver Code
 
# Given Input
arr = [1, 2, 3, 7]
n = len(arr)
 
# Function Call
print(maximumStones(arr, n))
 
# This code is contributed by shivani


C#




// C# program for the above approach
using System;
 
public class GFG
{
    static int ans = 0;
   
// Function to find the maximum score of Player 1
static int maximumStonesUtil(int[] arr, int n, int i,
                      int[] dp)
{
    // Base Case
    if (i >= n)
        return 0;
 
    ans = dp[i];
 
    // If the result is already computed, then
    // return the result
    if (ans != -1)
        return ans;
 
    // Variable to store maximum score
    ans = int.MinValue;
 
    // Pick one stone
    ans = Math.Max(
        ans, arr[i] - maximumStonesUtil(arr, n, i + 1, dp));
 
    // Pick 2 stones
    if (i + 1 < n)
        ans = Math.Max(ans, arr[i] + arr[i + 1]
                           - maximumStonesUtil(arr, n,
                                               i + 2, dp));
 
    // Pick 3 stones
    if (i + 2 < n)
        ans = Math.Max(ans, arr[i] + arr[i + 1] + arr[i + 2]
                           - maximumStonesUtil(arr, n,
                                               i + 3, dp));
 
    // Return the score of the player
    return ans;
}
 
// Function to find the winner of the game
static String maximumStones(int []arr, int n)
{
    // Create a 1D table, dp of size N
    int []dp = new int[n];
    for(int i = 0; i < n; i++)
        dp[i]=-1;
 
    // Store the result
    int res = maximumStonesUtil(arr, n, 0, dp);
 
    // Player 1 wins
    if (res > 0)
        return "Player1";
 
    // PLayer 2 wins
    else if (res < 0)
        return "Player2";
 
    // Tie
    else
        return "Tie";
}
 
// Driver Code
public static void Main(String[] args)
{
    // Given Input
    int []arr = { 1, 2, 3, 7 };
    int n = arr.Length;
 
    // Function Call
    Console.Write(maximumStones(arr, n));
 
}
}
 
// This code contributed by shikhasingrajput


Javascript




<script>
// Javascript program for the above approach
let ans = 0 ;
 
  // Function to find the maximum score of Player 1
function maximumStonesUtil( arr, n,  i,
                       dp)
{
    // Base Case
    if (i >= n)
        return 0;
 
    ans = dp[i];
 
    // If the result is already computed, then
    // return the result
    if (ans != -1)
        return ans;
 
    // Variable to store maximum score
    ans = -Math.pow(2,31);
 
    // Pick one stone
    ans = Math.max(
        ans, arr[i] - maximumStonesUtil(arr, n, i + 1, dp));
 
    // Pick 2 stones
    if (i + 1 < n)
        ans = Math.max(ans, arr[i] + arr[i + 1]
                           - maximumStonesUtil(arr, n,
                                               i + 2, dp));
 
    // Pick 3 stones
    if (i + 2 < n)
        ans = Math.max(ans, arr[i] + arr[i + 1] + arr[i + 2]
                           - maximumStonesUtil(arr, n,
                                               i + 3, dp));
 
    // Return the score of the player
    return ans;
}
 
// Function to find the winner of the game
function maximumStones(arr, n)
{
    // Create a 1D table, dp of size N
    let dp = new Array(n).fill(-1);
    
    // Store the result
    let res = maximumStonesUtil(arr, n, 0, dp);
 
    // Player 1 wins
    if (res > 0)
        return "Player1";
 
    // PLayer 2 wins
    else if (res < 0)
        return "Player2";
 
    // Tie
    else
        return "Tie";
}
 
    // Driver Code
    let arr= [ 1, 2, 3, 7 ];
    let n = arr.length;
     
    // Function Call
    document.write(maximumStones(arr, n));
 
// This code is contributed by jana_sayantan.
<script>


Output

Player2




Time Complexity: O(N)
Auxiliary Space: O(N)

Efficient Approach: Using the DP Tabulation method ( Iterative approach )

The approach to solving this problem is the same but DP tabulation(bottom-up) method is better than the Dp + memoization(top-down) because the memoization method needs extra stack space of recursion calls.

Steps to solve this problem:

  • Create a DP of size n+3 to store the solution of the subproblems.
  • Initialize the DP  with base cases dp[n] = dp[n+1] = dp[n+2] = 0.
  • Now Iterate over subproblems to get the value of the current problem from the previous computation of subproblems stored in DP
  • Print the final result 
    • if dp[0] > 0 print player1.
    • if  dp[0] < 0 print player2.
    • else print tie.

Implementation:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the winner of  game
string maximumStones(int* arr, int n)
{
    // Create a 1D table, dp of size N+3
    vector<int> dp(n + 3);
 
    // Initialize the table for the
    // last 3 stones
    dp[n] = dp[n + 1] = dp[n + 2] = 0;
 
    // Calculate the table for the
    // remaining stones in reverse order
    for (int i = n - 1; i >= 0; i--) {
        // Pick one stone
       int a = arr[i] - dp[i + 1];
      int b = -1 , c= -1;
      if(i+1 == n){
        b =  arr[i]- dp[i + 2];
        c = arr[i] - dp[i + 3];
      }
      else if ( i+2 == n){
        c = arr[i] +  arr[i + 1] - dp[i + 3];
      }
 
      if(b==-1)
        b = arr[i] + arr[i + 1] - dp[i + 2];
 
      if(c == -1)
        c = arr[i] +  arr[i + 1] + arr[i + 2] - dp[i + 3];
 
      dp[i] = max(a,max(b,c));
      }
   
    // Player 1 wins
    if (dp[0] > 0)
        return "Player1";
 
    // PLayer 2 wins
    else if (dp[0] < 0)
        return "Player2";
 
    // Tie
    else
        return "Tie";
}
 
// Driver Code
int main()
{
    // Given Input
    int arr[] = { 1, 2, 3, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    cout << maximumStones(arr, n);
 
    return 0;
}


Java




import java.util.*;
 
public class Main {
 
    // Function to find the winner of the game
    public static String maximumStones(int[] arr, int n) {
        // Create a 1D table, dp of size N+3
        int[] dp = new int[n + 3];
 
        // Initialize the table for the
        // last 3 stones
        dp[n] = dp[n + 1] = dp[n + 2] = 0;
 
        // Calculate the table for the
        // remaining stones in reverse order
        for (int i = n - 1; i >= 0; i--) {
            // Pick one stone
            int a = arr[i] - dp[i + 1];
            int b = -1, c = -1;
            if (i + 1 == n) {
                b = arr[i] - dp[i + 2];
                c = arr[i] - dp[i + 3];
            } else if (i + 2 == n) {
                c = arr[i] + arr[i + 1] - dp[i + 3];
            }
 
            if (b == -1)
                b = arr[i] + arr[i + 1] - dp[i + 2];
 
            if (c == -1)
                c = arr[i] + arr[i + 1] + arr[i + 2] - dp[i + 3];
 
            dp[i] = Math.max(a, Math.max(b, c));
        }
 
        // Player 1 wins
        if (dp[0] > 0)
            return "Player1";
 
        // PLayer 2 wins
        else if (dp[0] < 0)
            return "Player2";
 
        // Tie
        else
            return "Tie";
    }
 
    // Driver Code
    public static void main(String[] args) {
        // Given Input
        int[] arr = { 1, 2, 3, 7 };
        int n = arr.length;
 
        // Function Call
        System.out.println(maximumStones(arr, n));
    }
}


Python




# Function to find the winner of the game
def maximumStones(arr, n):
    # Create a 1D table, dp of size N+3
    dp = [0] * (n+3)
 
    # Initialize the table for the
    # last 3 stones
    dp[n] = dp[n + 1] = dp[n + 2] = 0
 
    # Calculate the table for the
    # remaining stones in reverse order
    for i in range(n-1, -1, -1):
        # Pick one stone
        a = arr[i] - dp[i + 1]
        b = c = -1
        if i+1 == n:
            b = arr[i] - dp[i + 2]
            c = arr[i] - dp[i + 3]
        elif i+2 == n:
            c = arr[i] + arr[i + 1] - dp[i + 3]
 
        if b == -1:
            b = arr[i] + arr[i + 1] - dp[i + 2]
 
        if c == -1:
            c = arr[i] + arr[i + 1] + arr[i + 2] - dp[i + 3]
 
        dp[i] = max(a, max(b, c))
   
    # Player 1 wins
    if dp[0] > 0:
        return "Player1"
 
    # Player 2 wins
    elif dp[0] < 0:
        return "Player2"
 
    # Tie
    else:
        return "Tie"
 
 
# Driver Code
if __name__ == '__main__':
    # Given Input
    arr = [1, 2, 3, 7]
    n = len(arr)
 
    # Function Call
    print(maximumStones(arr, n))


C#




using System;
 
class GFG {
    // Function to find the winner of the game "Maximum Stones"
  // and return "Player1", "Player2", or "Tie"
    public static string MaximumStones(int[] arr, int n) {
        // Create an array to store the maximum stones each player
      // can collect starting from the i-th position
        int[] dp = new int[n + 3];
 
        // Initialize the last three elements as
      // 0 (no stones available after the last position)
        dp[n] = dp[n + 1] = dp[n + 2] = 0;
 
        // Iterate through the array from right to left to
      // calculate the maximum stones each player can collect
        for (int i = n - 1; i >= 0; i--) {
            // Calculate the maximum stones Player1 can collect
          // starting from the i-th position
            int a = arr[i] - dp[i + 1];
 
            // Initialize variables to store the maximum stones
          // Player2 can collect from the next two positions
            int b = -1, c = -1;
 
            // If there is only one position left after the i-th
          // position, calculate the maximum stones Player2 can collect
          // from that position
            if (i + 1 == n) {
                b = arr[i] - dp[i + 2];
                c = arr[i] - dp[i + 3];
            }
            // If there are two positions left after the i-th position,
          // calculate the maximum stones Player2 can collect from those
          // two positions
            else if (i + 2 == n) {
                c = arr[i] + arr[i + 1] - dp[i + 3];
            }
 
            // If there are more than two positions left after the i-th position,
          // calculate the maximum stones Player2 can collect from the next three positions
            if (b == -1)
                b = arr[i] + arr[i + 1] - dp[i + 2];
 
            if (c == -1)
                c = arr[i] + arr[i + 1] + arr[i + 2] - dp[i + 3];
 
            // Calculate the maximum stones that Player1 can collect starting from the i-th position
            dp[i] = Math.Max(a, Math.Max(b, c));
        }
 
        // Determine the winner based on the maximum stones Player1
      // can collect from the first position
        if (dp[0] > 0)
            return "Player1";
        else if (dp[0] < 0)
            return "Player2";
        else
            return "Tie";
    }
 
    public static void Main(string[] args) {
        int[] arr = { 1, 2, 3, 7 };
        int n = arr.Length;
        Console.WriteLine(MaximumStones(arr, n));
    }
}


Javascript




// Function to find the winner of the game
function maximumStones(arr) {
  let n = arr.length;
 
  // Create an array dp of size N+3 and initialize it with 0
  let dp = Array(n + 3).fill(0);
 
  // Initialize the table for the last 3 stones
  dp[n] = dp[n + 1] = dp[n + 2] = 0;
 
  // Calculate the table for the remaining stones in reverse order
  for (let i = n - 1; i >= 0; i--) {
    // Pick one stone
    let a = arr[i] - dp[i + 1];
    let b = c = -1;
 
    if (i + 1 === n) {
      b = arr[i] - dp[i + 2];
      c = arr[i] - dp[i + 3];
    } else if (i + 2 === n) {
      c = arr[i] + arr[i + 1] - dp[i + 3];
    }
 
    if (b === -1) {
      b = arr[i] + arr[i + 1] - dp[i + 2];
    }
 
    if (c === -1) {
      c = arr[i] + arr[i + 1] + arr[i + 2] - dp[i + 3];
    }
 
    dp[i] = Math.max(a, Math.max(b, c));
  }
 
  // Player 1 wins
  if (dp[0] > 0) {
    return "Player1";
  }
  // Player 2 wins
  else if (dp[0] < 0) {
    return "Player2";
  }
  // Tie
  else {
    return "Tie";
  }
}
 
// Given Input
let arr = [1, 2, 3, 7];
 
// Function Call
console.log(maximumStones(arr));
 
// This code is contributed by srinivasteja


Output

Player2




Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments