Monday, January 13, 2025
Google search engine
HomeData Modelling & AICheck if it is possible to create a polygon with a given...

Check if it is possible to create a polygon with a given angle

Given an angle a    where, 1\le a< 180    . The task is to check whether it is possible to make a regular polygon with all of its interior angle equal to a    . If possible then print “YES”, otherwise print “NO” (without quotes). 
Examples: 
 

Input: angle = 90
Output: YES
Polygons with sides 4 is
possible with angle 90 degrees.

Input: angle = 30
Output: NO

 

Approach: The Interior angle is defined as the angle between any two adjacent sides of a regular polygon.
It is given by   \;Interior\;angle = \frac{180 \times (n-2)}{n}\;      where, n is the number of sides in the polygon.
This can be written as   \;a = \frac{180 \times (n-2)}{n}\;    .
On rearranging terms we get,   \;n = \frac{360}{180 - a}\;    .
Thus, if n is an Integer the answer is “YES” otherwise, answer is “NO”.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check whether it is possible
// to make a regular polygon with a given angle.
void makePolygon(float a)
{
    // N denotes the number of sides
    // of polygons possible
    float n = 360 / (180 - a);
    if (n == (int)n)
        cout << "YES";
    else
        cout << "NO";
}
 
// Driver code
int main()
{
    float a = 90;
 
    // function to print the required answer
    makePolygon(a);
 
    return 0;
}


Java




class GFG
{
// Function to check whether
// it is possible to make a
// regular polygon with a given angle.
static void makePolygon(double a)
{
    // N denotes the number of
    // sides of polygons possible
    double n = 360 / (180 - a);
    if (n == (int)n)
        System.out.println("YES");
    else
        System.out.println("NO");
}
 
// Driver code
public static void main (String[] args)
{
    double a = 90;
 
    // function to print
    // the required answer
    makePolygon(a);
}
}
 
// This code is contributed by Bilal


Python3




# Python 3 implementation
# of above approach
 
# Function to check whether
# it is possible to make a
# regular polygon with a
# given angle.
def makePolygon(a) :
 
    # N denotes the number of sides
    # of polygons possible
    n = 360 / (180 - a)
 
    if n == int(n) :
        print("YES")
 
    else :
        print("NO")
 
# Driver Code
if __name__ == "__main__" :
    a = 90
 
    # function calling
    makePolygon(a)
     
# This code is contributed
# by ANKITRAI1


C#




// C# implementation of
// above approach
using System;
 
class GFG
{
// Function to check whether
// it is possible to make a
// regular polygon with a
// given angle.
static void makePolygon(double a)
{
    // N denotes the number of
    // sides of polygons possible
    double n = 360 / (180 - a);
    if (n == (int)n)
        Console.WriteLine("YES");
    else
        Console.WriteLine("NO");
}
 
// Driver code
static void Main()
{
    double a = 90;
 
    // function to print
    // the required answer
    makePolygon(a);
}
}
 
// This code is contributed by mits


PHP




<?php
// PHP implementation of above approach
 
// Function to check whether it
// is possible to make a regular
// polygon with a given angle.
function makePolygon($a)
{
    // N denotes the number of
    // sides of polygons possible
    $n = 360 / (180 - $a);
    if ($n == (int)$n)
        echo "YES";
    else
        echo "NO";
}
 
// Driver code
$a = 90;
 
// function to print the
// required answer
makePolygon($a);
 
// This code is contributed
// by ChitraNayal
?>


Javascript




<script>
 
      // JavaScript implementation of above approach
      // Function to check whether it is possible
      // to make a regular polygon with a given angle.
       
      function makePolygon(a)
      {
        // N denotes the number of sides
        // of polygons possible
        var n = parseFloat(360 / (180 - a));
        if (n === parseInt(n))
        document.write("YES");
        else
        document.write("NO");
      }
 
      // Driver code
      var a = 90;
       
      // function to print the required answer
      makePolygon(a);
       
</script>


Output: 

YES

 

Time Complexity: O(1), since there is no loop or recursion.
Auxiliary Space: O(1), since no extra space has been taken.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments