The Floyd-Rivest algorithm is a selection algorithm used to find the kth smallest element in an array of distinct elements. It is similar to the QuickSelect algorithm but has a better running time in practice.
Like QuickSelect, the algorithm works on the idea of partitioning. After partitioning an array, the partition element ends up in the corrected sorted position. If the array has all distinct elements, retrieving the (k+1)th smallest element is the same as retrieving the (k+1)th element after sorting. Because a full sort is expensive(takes O(N log N) to compute), the Floyd-Rivest algorithm leverages partitioning to accomplish the same in O(N) time.
Algorithm:
- If the size of the array S being considered is small enough, then the QuickSelect algorithm is applied directly to get the K-th smallest element. This size is an arbitrary constant of the algorithm, which the authors choose as 600.
- Otherwise, 2 pivots are chosen- newLeftIndex and newRightIndex using random sampling such that they have the highest probability of containing the K-th largest element. Then, the function is called recursively with left and right boundaries of the array now set to newLeftIndex and newRightIndex.
- Like QuickSelect, after partitioning the subarray, the left and right boundaries need to be set such that they contain the K-largest element.
After partitioning the array around K, the Kth element is in its correct sorted position. So, the left and right boundaries are set in such a way that the subarray being considered contains array[k]
Below is the implementation of the above approach.
C++
// C++ implementation of the above approach. #include <iostream> #include <math.h> using namespace std; // Function to return the // sign of a number int sign( double x) { if (x < 0) return -1; if (x > 0) return 1; return 0; } // Function to swap // two numbers in an array. void swap( int arr[], int i, int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } int select( int arr[], int left, int right, int k) { while (right > left) { if (right - left > 600) { // Choosing a small subarray // S based on sampling. // 600, 0.5 and 0.5 // are arbitrary constants int n = right - left + 1; int i = k - left + 1; double z = log (n); double s = 0.5 * exp (2 * z / 3); double sd = 0.5 * sqrt (z * s * (n - s) / n) * sign(i - n / 2); int newLeft = max(left, ( int )(k - i * s / n + sd)); int newRight = min(right, ( int )(k + (n - i) * s / n + sd)); select(arr, newLeft, newRight, k); } // Partition the subarray S[left..right] // with arr[k] as pivot int t = arr[k]; int i = left; int j = right; swap(arr, left, k); if (arr[right] > t) { swap(arr, left, right); } while (i < j) { swap(arr, i, j); i++; j--; while (arr[i] < t) i++; while (arr[j] > t) j--; } if (arr[left] == t) swap(arr, left, j); else { j++; swap(arr, right, j); } // Adjust the left and right pointers // to select the subarray having k if (j <= k) left = j + 1; if (k <= j) right = j - 1; } return arr[k]; } // Driver code int main() { int arr[] = { 7, 3, 4, 0, 1, 6 }; int n = sizeof (arr) / sizeof ( int ); // k-th smallest element. // In this we get the 2nd smallest element int k = 2; int res = select(arr, 0, n - 1, k - 1); cout << "The " << k << "-th smallest element is " << res << endl; return 0; } |
Java
// Java implementation of the above approach. class GFG { // Function to return // the sign of the number int sign( double x) { if (x < 0 ) return - 1 ; if (x > 0 ) return 1 ; return 0 ; } // Function to swap two numbers in an array void swap( int arr[], int i, int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } // Function to return kth smallest number int select( int arr[], int left, int right, int k) { while (right > left) { if (right - left > 600 ) { // Choosing a small subarray // S based on sampling. // 600, 0.5 and 0.5 are // arbitrary constants int n = right - left + 1 ; int i = k - left + 1 ; double z = Math.log(n); double s = 0.5 * Math.exp( 2 * z / 3 ); double sd = 0.5 * Math.sqrt(z * s * (n - s) / n) * sign(i - n / 2 ); int newLeft = Math.max(left, ( int )(k - i * s / n + sd)); int newRight = Math.min(right, ( int )(k + (n - i) * s / n + sd)); select(arr, newLeft, newRight, k); } // Partition the subarray S[left..right] // with arr[k] as pivot int t = arr[k]; int i = left; int j = right; swap(arr, left, k); if (arr[right] > t) { swap(arr, left, right); } while (i < j) { swap(arr, i, j); i++; j--; while (arr[i] < t) i++; while (arr[j] > t) j--; } if (arr[left] == t) swap(arr, left, j); else { j++; swap(arr, right, j); } // Adjust the left and right // pointers to select the subarray having k if (j <= k) left = j + 1 ; if (k <= j) right = j - 1 ; } return arr[k]; } // Driver code public static void main(String[] args) { int [] arr = new int [] { 7 , 3 , 4 , 0 , 1 , 6 }; // k-th smallest element. // In this we get the 2nd smallest element int k = 2 ; FloydRivest f = new FloydRivest(); int res = f.select(arr, 0 , arr.length - 1 , k - 1 ); System.out.println( "The " + k + "-th smallest element is " + res); } } |
Python3
# Python implementation of the above approach. import math import random # Function to return the # sign of the number def sign(x): if x> 0 : return 1 elif x< 0 : return - 1 return 0 # Function to swap two # numbers in an array def swap(arr, i, j): temp = arr[i] arr[i] = arr[j] arr[j] = temp # Function to return kth smallest number def select(arr: list , left: int , right: int , k: int ): while right>left: # Choosing a small subarray # S based on sampling. # 600, 0.5 and 0.5 are # arbitrary constants if right - left > 600 : n = right - left + 1 i = k - left + 1 z = math.log(n) s = 0.5 * math.exp( 2 * z / 3 ) sd = 0.5 * math.sqrt(z * s * (n - s) / n) * sign(i - n / 2 ) newLeft = int ( max (left, k - i * s / n + sd)) newRight = int ( min (right, k + (n - i) * s / n + sd)) select(arr, newLeft, newRight, k) t = arr[k] i = left j = right swap(arr, left, k) if arr[right] > t: swap(arr, left, right) while i<j: swap(arr, i, j) i = i + 1 j = j - 1 while arr[i]<t: i = i + 1 while arr[j] >t: j = j - 1 if arr[left] = = t: swap(arr, left, j) else : j = j + 1 swap(arr, right, j) # Updating the left and right indices # depending on position of k-th element if j< = k: left = j + 1 if k< = j: right = j - 1 return arr[k] arr = [ 7 , 3 , 4 , 0 , 1 , 6 ] # k-th smallest element. # In this the 2nd smallest element is returned. k = 2 res = select(arr, 0 , len (arr) - 1 , k - 1 ) print ( 'The {}-th smallest element is {}' . format (k, res)) |
C#
// C# implementation of the above approach. using System; class GFG { // Function to return // the sign of the number static int sign( double x) { if (x < 0) return -1; if (x > 0) return 1; return 0; } // Function to swap two numbers in an array static void swap( int []arr, int i, int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } // Function to return kth smallest number static int select ( int []arr, int left, int right, int k) { int i; while (right > left) { if (right - left > 600) { // Choosing a small subarray // S based on sampling. // 600, 0.5 and 0.5 are // arbitrary constants int n = right - left + 1; i = k - left + 1; double z = Math.Log(n); double s = 0.5 * Math.Exp(2 * z / 3); double sd = 0.5 * Math.Sqrt(z * s * (n - s) / n) * sign(i - n / 2); int newLeft = Math.Max(left, ( int )(k - i * s / n + sd)); int newRight = Math.Min(right, ( int )(k + (n - i) * s / n + sd)); select (arr, newLeft, newRight, k); } // Partition the subarray S[left..right] // with arr[k] as pivot int t = arr[k]; i = left; int j = right; swap(arr, left, k); if (arr[right] > t) { swap(arr, left, right); } while (i < j) { swap(arr, i, j); i++; j--; while (arr[i] < t) i++; while (arr[j] > t) j--; } if (arr[left] == t) swap(arr, left, j); else { j++; swap(arr, right, j); } // Adjust the left and right // pointers to select the subarray having k if (j <= k) left = j + 1; if (k <= j) right = j - 1; } return arr[k]; } // Driver code public static void Main() { int [] arr = { 7, 3, 4, 0, 1, 6 }; // k-th smallest element. // In this we get the 2nd smallest element int k = 2; int res = select (arr, 0, arr.Length - 1, k - 1); Console.WriteLine( "The " + k + "-th smallest element is " + res); } } // This code is contributed by AnkitRai01 |
Javascript
<script> // Javascript implementation of the above approach. // Function to return // the sign of the number function sign(x) { if (x < 0) return -1; if (x > 0) return 1; return 0; } // Function to swap two numbers in an array function swap(arr, i, j) { let temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } // Function to return kth smallest number function select(arr, left, right, k) { let i; while (right > left) { if (right - left > 600) { // Choosing a small subarray // S based on sampling. // 600, 0.5 and 0.5 are // arbitrary constants let n = right - left + 1; i = k - left + 1; let z = Math.log(n); let s = 0.5 * Math.exp(2 * z / 3); let sd = 0.5 * Math.sqrt(z * s * (n - s) / n) * sign(i - n / 2); let newLeft = Math.max(left, (k - i * s / n + sd)); let newRight = Math.min(right, (k + (n - i) * s / n + sd)); select(arr, newLeft, newRight, k); } // Partition the subarray S[left..right] // with arr[k] as pivot let t = arr[k]; i = left; let j = right; swap(arr, left, k); if (arr[right] > t) { swap(arr, left, right); } while (i < j) { swap(arr, i, j); i++; j--; while (arr[i] < t) i++; while (arr[j] > t) j--; } if (arr[left] == t) swap(arr, left, j); else { j++; swap(arr, right, j); } // Adjust the left and right // pointers to select the subarray having k if (j <= k) left = j + 1; if (k <= j) right = j - 1; } return arr[k]; } let arr = [ 7, 3, 4, 0, 1, 6 ]; // k-th smallest element. // In this we get the 2nd smallest element let k = 2; let res = select(arr, 0, arr.length - 1, k - 1); document.write( "The " + k + "-th smallest element is " + res); </script> |
The 2-th smallest element is 1
Time complexity: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!