Thursday, January 9, 2025
Google search engine
HomeData Modelling & AISum of first N terms of Quadratic Sequence 3 + 7 +...

Sum of first N terms of Quadratic Sequence 3 + 7 + 13 + …

Given a quadratic series as given below, the task is to find the sum of the first n terms of this series.

Sn = 3 + 7 + 13 + 21 + 31 + ….. + upto n terms

Examples: 

Input: N = 3
Output: 23

Input: N = 4
Output: 44

Approach: 
Let the series be represented as  

Sn = 3 + 7 + 13 + ... + tn

where  

  • Sn represents the sum of the series till n terms.
  • tn represents the nth term of the series.

Now, to formulate the series, the elements need to be formed by taking the difference of the consecutive elements of the series.

Equation 1: Sn = 3 + 7 + 13 + 21 + 31 +…..+ tn-1 + tn 
Equation 2: Sn = 0 + 3 + 7 + 13 + 21 + 31 + …… + tn-1 + tn 
(writing the above series by shifting all elements to right by 1 position) 

Now, Subtract Equation 2 from Equation 1 i.e. (Equation 1 – Equation 2)  

Sn – Sn = (3 – 0) + (7 – 3) + (13 – 7) + (31 – 21) + …… + (tn- tn-1) – tn 
=> 0 = 3 + 4 + 6 + 8 + 10 + …… + (tn – tn-1) – tn  

In the above series, leaving 3 aside, terms starting from 4 to (tn – tn-1) will form an A.P.
Since the formula of the sum of n terms of A.P. is:

Sn = n*(2*a + (n – 1)*d)/2

which implies, 

In series: 4 + 6 + 8 + … + (tn – tn-1) 
AP is formed with (n-1) terms. 

Hence,  

Sum of this series: (n-1)*(2*4 + (n-2)*2)/2 

Therefore, the original series: 
0 = 3 + (n-1)*(2*4 + (n-2)*2)/2 – tn 
where tn = n^2 + n + 1 which is the nth term.
Therefore, 

Sum of first n terms of series will be:
tn = n^2 + n + 1 
Sn = \sum     (n^2) + \sum     n + \sum     (1) 
Sn = n*(n+1)*(n+2)/6 + n*(n+1)/2 + n 
Sn = n*(n^2 + 3*n + 5)/3 

Below is the implementation of the above approach:  

C++




// C++ program to find sum of first n terms
 
#include <bits/stdc++.h>
using namespace std;
 
int calculateSum(int n)
{
    // Sum = n*(n^2 + 3*n + 5)/3
    return n * (pow(n, 2) + 3 * n + 5) / 3;
}
 
int main()
{
    // number of terms to be included in the sum
    int n = 3;
 
    // find the Sum
    cout << "Sum = " << calculateSum(n);
 
    return 0;
}


Java




// Java program to find sum of first n terms
import java.util.*;
 
class solution
{
//function to calculate sum of n terms of the series
static int calculateSum(int n)
{
    // Sum = n*(n^2 + 3*n + 5)/3
    return n * (int)  (Math.pow(n, 2) + 3 * n + 5 )/ 3;
}
 
public static void main(String arr[])
{
    // number of terms to be included in the sum
    int n = 3;
 
    // find the Sum
    System.out.println("Sum = " +calculateSum(n));
 
}
}


Python3




# Python 3 program to find sum
# of first n terms
from math import pow
 
def calculateSum(n):
     
    # Sum = n*(n^2 + 3*n + 5)/3
    return n * (pow(n, 2) + 3 * n + 5) / 3
 
if __name__ == '__main__':
     
    # number of terms to be included
    # in the sum
    n = 3
 
    # find the Sum
    print("Sum =", int(calculateSum(n)))
 
# This code is contributed by
# Sanjit_Prasad


C#




// C# program to find sum of first n terms
using System;
class gfg
{
 public double calculateSum(int n)
 {
    // Sum = n*(n^2 + 3*n + 5)/3
    return (n * (Math.Pow(n, 2) + 3 * n + 5) / 3);
  }
}
 
//driver code
class geek
{
 public static int Main()
 {
     gfg g = new gfg();
    // number of terms to be included in the sum
    int n = 3;
    //find the Sum
    Console.WriteLine( "Sum = {0}", g.calculateSum(n));
    return 0;
 }
}


PHP




<?php
// PHP program to find sum
// of first n terms
 
function calculateSum($n)
{
    // Sum = n*(n^2 + 3*n + 5)/3
    return $n * (pow($n, 2) + 3 *
                     $n + 5) / 3;
}
 
// Driver Code
 
// number of terms to be
// included in the sum
$n = 3;
 
// find the Sum
echo "Sum = " . calculateSum($n);
 
// This code is contributed by mits
?>


Javascript




<script>
 
// Javascript program to find sum of first n terms
 
// Function to find the quadratic
// equation whose roots are a and b
function calculateSum(n)
{
     
    // Sum = n*(n^2 + 3*n + 5)/3
    return n * (Math.pow(n, 2) + 3 * n + 5 ) / 3;
}
 
// Driver Code
 
// Number of terms to be
// included in the sum
var n = 3;
 
// Find the Sum
 
document.write("Sum = " + calculateSum(n));
 
// This code is contributed by Ankita saini
     
</script>


Output

Sum = 23

Time Complexity: O(1), since there is no loop or recursion.
Auxiliary Space: O(1), since no extra space has been taken.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments