Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIMinimum cost to convert one given string to another using swap, insert...

Minimum cost to convert one given string to another using swap, insert or delete operations

Given two strings A and B of length N and M respectively, the task is to find the minimum cost to convert string A to B using the following operations:

  • A character of string A can be swapped from another character of the same string. Cost = 0.
  • A character can be deleted from string B or can be inserted in the string A. Cost = 1.

Examples:

Input: A = “1aB+-“, B = “CC”
Output: 7
Explanation: Remove all 5 characters from string A and insert character C twice. Therefore, the total cost = 5 + 2 = 7.

Input: A = “aBcD”, B = “DBac”
Output: 0
Explanation: Following operations need to be performed to convert string A to string B: 

  1. Swap ‘a’ with ‘D’. Therefore, A = “DBca”.
  2. Swap ‘a’ with ‘c’. Therefore, A = “DBac”.

Therefore, the total cost = 0.

Approach: The idea is to perform a swap operation maximum number of times to reduce the total cost. Observe that the characters which are common between the strings A and B can be swapped any number of times in A to make the string equal to B. All the characters that are present in the string A but not in the string B have to be deleted from A and all the characters present in B and not present in A have to be inserted in A to make both the strings equal. Follow the steps below to solve the problem:

  1. Initialize two arrays a[] and b[] of length 256 to store the frequencies of each character in the strings A and B respectively.
  2. Initialize a variable, say minCost, to store the minimum cost.
  3. Traverse over the range [0, 255] using the variable i and at each iteration, increment minCost by abs(a[i] – b[i]).
  4. After completing the above steps, print the value of minCost as the minimum cost required to convert string A to B.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum cost
// to convert string a to b
void minimumCost(string a, string b)
{
    // Stores the frequency of string
    // a and b respectively
    vector<int> fre1(256), fre2(256);
 
    // Store the frequencies of
    // characters in a
    for (char c : a)
        fre1[(int)(c)]++;
 
    // Store the frequencies of
    // characters in b
    for (char c : b)
        fre2[(int)(c)]++;
 
    // Minimum cost to convert A to B
    int mincost = 0;
 
    // Find the minimum cost
    for (int i = 0; i < 256; i++) {
        mincost += abs(fre1[i]
                       - fre2[i]);
    }
 
    // Print the minimum cost
    cout << mincost << endl;
}
 
// Driver Code
int main()
{
    string A = "1AB+-", B = "cc";
 
    // Function Call
    minimumCost(A, B);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
     
// Function to find the minimum cost
// to convert string a to b
public static void minimumCost(String a, String b)
{
     
    // Stores the frequency of string
    // a and b respectively
    int fre1[] = new int[256];
    int fre2[] = new int[256];
  
    // Store the frequencies of
    // characters in a
    for(char c : a.toCharArray())
        fre1[(int)(c)]++;
  
    // Store the frequencies of
    // characters in b
    for(char c : b.toCharArray())
        fre2[(int)(c)]++;
  
    // Minimum cost to convert A to B
    int mincost = 0;
  
    // Find the minimum cost
    for(int i = 0; i < 256; i++)
    {
        mincost += Math.abs(fre1[i] -
                            fre2[i]);
    }
  
    // Print the minimum cost
    System.out.println(mincost);
}
 
// Driver Code
public static void main(String[] args)
{
    String A = "1AB+-", B = "cc";
     
    // Function Call
    minimumCost(A, B);
}
}
 
// This code is contributed by divyeshrabadiya07


Python3




# Python3 program for the above approach
 
# Function to find the minimum cost
# to convert a to b
def minimumCost(a, b):
   
    # Stores the frequency of string
    # a and b respectively
    fre1 = [0]*(256)
    fre2 = [0]*(256)
 
    # Store the frequencies of
    # characters in a
    for c in a:
        fre1[ord(c)] += 1
 
    # Store the frequencies of
    # characters in b
    for c in b:
        fre2[ord(c)] += 1
 
    # Minimum cost to convert A to B
    mincost = 0
 
    # Find the minimum cost
    for i in range(256):
        mincost += abs(fre1[i] - fre2[i])
 
    # Print the minimum cost
    print(mincost)
 
# Driver Code
if __name__ == '__main__':
    A = "1AB+-"
    B = "cc"
 
    # Function Call
    minimumCost(A, B)
 
# This code is contributed by mohit kumar 29


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
  
class GFG{
  
// Function to find the minimum cost
// to convert string a to b
public static void minimumCost(string a,
                               string b)
{
     
    // Stores the frequency of string
    // a and b respectively
    int[] fre1 = new int[256];
    int[] fre2 = new int[256];
   
    // Store the frequencies of
    // characters in a
    foreach(char c in a.ToCharArray())
        fre1[(int)(c)]++;
         
    // Store the frequencies of
    // characters in b
    foreach(char c in b.ToCharArray())
        fre2[(int)(c)]++;
         
    // Minimum cost to convert A to B
    int mincost = 0;
     
    // Find the minimum cost
    for(int i = 0; i < 256; i++)
    {
        mincost += Math.Abs(fre1[i] -
                            fre2[i]);
    }
     
    // Print the minimum cost
    Console.Write(mincost);
}
  
// Driver code
public static void Main()
{
    string A = "1AB+-", B = "cc";
      
    // Function Call
    minimumCost(A, B);
}   
}
 
// This code is contributed by sanjoy_62


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to find the minimum cost
// to convert string a to b
function minimumCost(a, b)
{
    // Stores the frequency of string
    // a and b respectively
    var fre1 = Array(256).fill(0), fre2= Array(256).fill(0);
 
    // Store the frequencies of
    // characters in a
    a.split('').forEach(c => {
        fre1[c.charCodeAt(0)]++;
    });
 
    // Store the frequencies of
    // characters in b
    b.split('').forEach(c => {
        fre2[c.charCodeAt(0)]++;
    });
 
    // Minimum cost to convert A to B
    var mincost = 0;
 
    // Find the minimum cost
    for (var i = 0; i < 256; i++) {
        mincost += Math.abs(fre1[i]
                       - fre2[i]);
    }
 
    // Print the minimum cost
    document.write( mincost );
}
 
// Driver Code
var A = "1AB+-", B = "cc";
 
// Function Call
minimumCost(A, B);
 
// This code is contributed by importantly.
</script>   


Output: 

7

 

Time Complexity: O(N + M)
Auxiliary Space: O(1) because constant size arrays fre1 and fre2 are used

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments