Given a number N, the task is to print the maximum between the sum and multiplication of the digits of the given number until the number is reduced to a single digit.
Note: Sum and multiplication of digits to be done until the number is reduced to a single digit.
Let’s take an example where N = 19,
19 breaks into 1+9=10 then 10 breaks into 1+0=1. 1 is a single digit sum.
Also, 19 breaks into 1*9 = 9. 9 is a single digit multiplication.
So, output is 9 i.e. maximum of 9 and 1.
Input: N = 631 Output: 8 Input: 110 Output: 2
Approach:
- Check if a number is less than 10 then the sum and product will be the same. So, return that number.
- Else,
- Find the sum of digits repeatedly using Method 2 of Finding sum of digits of a number until sum becomes single digit.
- And, Find the product of digits repeatedly using Method 1 of Finding sum of digits of a number until sum becomes single digit.
- Return the maximum of both.
Below is the implementation of above approach:
C++
// CPP implementation of above approach #include<bits/stdc++.h> using namespace std; // Function to sum the digits until it // becomes a single digit long repeatedSum( long n) { if (n == 0) return 0; return (n % 9 == 0) ? 9 : (n % 9); } // Function to product the digits until it // becomes a single digit long repeatedProduct( long n) { long prod = 1; // Loop to do sum while // sum is not less than // or equal to 9 while (n > 0 || prod > 9) { if (n == 0) { n = prod; prod = 1; } prod *= n % 10; n /= 10; } return prod; } // Function to find the maximum among // repeated sum and repeated product long maxSumProduct( long N) { if (N < 10) return N; return max(repeatedSum(N), repeatedProduct(N)); } // Driver code int main() { long n = 631; cout << maxSumProduct(n)<<endl; return 0; } // This code is contributed by mits |
Java
// Java implementation of above approach import java.util.*; import java.lang.*; import java.io.*; class GFG { // Function to sum the digits until it // becomes a single digit public static long repeatedSum( long n) { if (n == 0 ) return 0 ; return (n % 9 == 0 ) ? 9 : (n % 9 ); } // Function to product the digits until it // becomes a single digit public static long repeatedProduct( long n) { long prod = 1 ; // Loop to do sum while // sum is not less than // or equal to 9 while (n > 0 || prod > 9 ) { if (n == 0 ) { n = prod; prod = 1 ; } prod *= n % 10 ; n /= 10 ; } return prod; } // Function to find the maximum among // repeated sum and repeated product public static long maxSumProduct( long N) { if (N < 10 ) return N; return Math.max(repeatedSum(N), repeatedProduct(N)); } // Driver code public static void main(String[] args) { long n = 631 ; System.out.println(maxSumProduct(n)); } } |
Python3
# Python 3 implementation of above approach # Function to sum the digits until # it becomes a single digit def repeatedSum(n): if (n = = 0 ): return 0 return 9 if (n % 9 = = 0 ) else (n % 9 ) # Function to product the digits # until it becomes a single digit def repeatedProduct(n): prod = 1 # Loop to do sum while # sum is not less than # or equal to 9 while (n > 0 or prod > 9 ) : if (n = = 0 ) : n = prod prod = 1 prod * = n % 10 n / / = 10 return prod # Function to find the maximum among # repeated sum and repeated product def maxSumProduct(N): if (N < 10 ): return N return max (repeatedSum(N), repeatedProduct(N)) # Driver code if __name__ = = "__main__" : n = 631 print (maxSumProduct(n)) # This code is contributed # by ChitraNayal |
C#
// C# implementation of // above approach using System; class GFG { // Function to sum the digits // until it becomes a single digit public static long repeatedSum( long n) { if (n == 0) return 0; return (n % 9 == 0) ? 9 : (n % 9); } // Function to product the digits // until it becomes a single digit public static long repeatedProduct( long n) { long prod = 1; // Loop to do sum while // sum is not less than // or equal to 9 while (n > 0 || prod > 9) { if (n == 0) { n = prod; prod = 1; } prod *= n % 10; n /= 10; } return prod; } // Function to find the maximum among // repeated sum and repeated product public static long maxSumProduct( long N) { if (N < 10) return N; return Math.Max(repeatedSum(N), repeatedProduct(N)); } // Driver code public static void Main() { long n = 631; Console.WriteLine(maxSumProduct(n)); } } // This code is contributed // by inder_verma |
Javascript
<script> // javascript implementation of above approach // Function to sum the digits until it // becomes a single digit function repeatedSum(n) { if (n == 0) return 0; return (n % 9 == 0) ? 9 : (n % 9); } // Function to product the digits until it // becomes a single digit function repeatedProduct(n) { var prod = 1; // Loop to do sum while // sum is not less than // or equal to 9 while (n > 0 || prod > 9) { if (n == 0) { n = prod; prod = 1; } prod *= n % 10; n = parseInt(n/10); } return prod; } // Function to find the maximum among // repeated sum and repeated product function maxSumProduct(N) { if (N < 10) return N; return Math.max(repeatedSum(N), repeatedProduct(N)); } // Driver code var n = 631; document.write(maxSumProduct(n)); // This code contributed by aashish1995 </script> |
8
Time Complexity: O(log10n)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!