Monday, January 13, 2025
Google search engine
HomeData Modelling & AIFill missing entries of a magic square

Fill missing entries of a magic square

Given a 3X3 matrix mat with it’s left diagonal elements missing (set to 0), considering the sum of every row, column and diagonal of the original matrix was equal, the task is to find the missing diagonal elements and print the original matrix.

Examples: 

Input: mat[][] = {{0, 7, 6}, {9, 0, 1}, {4, 3, 0}} 
Output: 
2 7 6 
9 5 1 
4 3 8 
Row sum = Column sum = Diagonal sum = 15

Input: mat[][] = {{0, 1, 1}, {1, 0, 1}, {1, 1, 0}} 
Output: 
1 1 1 
1 1 1 
1 1 1 

Approach: Let Sum denote the total sum excluding the diagonal elements, 

Sum = total sum of the given matrix – diagonalSum 
Sum = (3 * rowSum) – diagonalSum 
Sum = (2 * rowSum) [Since, columnSum = rowSum = diagonalSum] 
rowSum = Sum / 2 

Hence, we can insert an element in every row such that the sum of the row is rowSum

Below is the implementation of the above approach: 

C++




// C++ program to fill blanks with numbers
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the original matrix
int printFilledDiagonal(int sq[][3])
{
    // Calculate the sum of all the elements
    // of the matrix
    int sum = 0;
    for (int i = 0; i < 3; i++)
        for (int j = 0; j < 3; j++)
            sum += sq[i][j];
 
    // Required sum of each row (from the approach)
    sum /= 2;
 
    for (int i = 0; i < 3; i++) {
 
        // Row sum excluding the diagonal element
        int rowSum = 0;
        for (int j = 0; j < 3; j++)
            rowSum += sq[i][j];
 
        // Element that must be inserted at
        // diagonal element of the current row
        sq[i][i] = sum - rowSum;
    }
 
    // Print the updated matrix
    for (int i = 0; i < 3; i++) {
        for (int j = 0; j < 3; j++)
            cout << sq[i][j] << " ";
        cout << endl;
    }
}
 
// Driver Program to test above function
int main()
{
    int sq[3][3] = {
        { 0, 7, 6 },
        { 9, 0, 1 },
        { 4, 3, 0 }
    };
 
    printFilledDiagonal(sq);
    return 0;
}


Java




// Java program to fill blanks with numbers
 
import java.io.*;
 
class GFG {
    
 
 
// Function to print the original matrix
static int printFilledDiagonal(int sq[][])
{
    // Calculate the sum of all the elements
    // of the matrix
    int sum = 0;
    for (int i = 0; i < 3; i++)
        for (int j = 0; j < 3; j++)
            sum += sq[i][j];
 
    // Required sum of each row (from the approach)
    sum /= 2;
 
    for (int i = 0; i < 3; i++) {
 
        // Row sum excluding the diagonal element
        int rowSum = 0;
        for (int j = 0; j < 3; j++)
            rowSum += sq[i][j];
 
        // Element that must be inserted at
        // diagonal element of the current row
        sq[i][i] = sum - rowSum;
    }
 
    // Print the updated matrix
    for (int i = 0; i < 3; i++) {
        for (int j = 0; j < 3; j++)
            System.out.print( sq[i][j] + " ");
        System.out.println();
    }
    return 0;
}
 
// Driver Program to test above function
 
    public static void main (String[] args) {
        int sq[][] = {
        { 0, 7, 6 },
        { 9, 0, 1 },
        { 4, 3, 0 }
    };
 
    printFilledDiagonal(sq);
    }
     
}
// This code is contributed by anuj_67..


Python3




# Python3 program to fill blanks
# with numbers
 
# Function to print the original matrix
def printFilledDiagonal(sq):
 
    # Calculate the sum of all the
    # elements of the matrix
    Sum = 0
    for i in range(0, 3):
        for j in range(0, 3):
            Sum += sq[i][j]
 
    # Required sum of each
    # row (from the approach)
    Sum = Sum//2
 
    for i in range(0, 3):
 
        # Row sum excluding the
        # diagonal element
        rowSum = 0
        for j in range(0, 3):
            rowSum += sq[i][j]
 
        # Element that must be inserted
        # at diagonal element of the
        # current row
        sq[i][i] = Sum - rowSum
     
    # Print the updated matrix
    for i in range(0, 3):
        for j in range(0, 3):
            print(sq[i][j], end = " ")
        print()
 
# Driver Code
if __name__ == "__main__":
 
    sq = [[0, 7, 6],
          [9, 0, 1],
          [4, 3, 0]]
 
    printFilledDiagonal(sq)
     
# This code is contributed
# by Rituraj Jain


C#




// C# program to fill blanks with numbers
 
using System;
 
class GFG {
     
 
 
// Function to print the original matrix
static int printFilledDiagonal(int [,]sq)
{
    // Calculate the sum of all the elements
    // of the matrix
    int sum = 0;
    for (int i = 0; i < 3; i++)
        for (int j = 0; j < 3; j++)
            sum += sq[i,j];
 
    // Required sum of each row (from the approach)
    sum /= 2;
 
    for (int i = 0; i < 3; i++) {
 
        // Row sum excluding the diagonal element
        int rowSum = 0;
        for (int j = 0; j < 3; j++)
            rowSum += sq[i,j];
 
        // Element that must be inserted at
        // diagonal element of the current row
        sq[i,i] = sum - rowSum;
    }
 
    // Print the updated matrix
    for (int i = 0; i < 3; i++) {
        for (int j = 0; j < 3; j++)
            Console.Write( sq[i,j] + " ");
            Console.WriteLine();
    }
    return 0;
}
 
// Driver Program to test above function
 
    public static void Main () {
        int [,]sq = {
        { 0, 7, 6 },
        { 9, 0, 1 },
        { 4, 3, 0 }
    };
 
    printFilledDiagonal(sq);
    }
     
}
// This code is contributed by inder_verma


PHP




<?php
// PHP program to fill blanks with numbers
 
// Function to print the original matrix
function printFilledDiagonal($sq)
{
    // Calculate the sum of all the
    // elements of the matrix
    $sum = 0;
    for ($i = 0; $i < 3; $i++)
        for ($j = 0; $j < 3; $j++)
            $sum += $sq[$i][$j];
 
    // Required sum of each row
    // (from the approach)
    $sum = (int)($sum / 2);
 
    for ($i = 0; $i < 3; $i++)
    {
 
        // Row sum excluding the
        // diagonal element
        $rowSum = 0;
        for ($j = 0; $j < 3; $j++)
            $rowSum += $sq[$i][$j];
 
        // Element that must be inserted at
        // diagonal element of the current row
        $sq[$i][$i] = $sum - $rowSum;
    }
 
    // Print the updated matrix
    for ($i = 0; $i < 3; $i++)
    {
        for ($j = 0; $j < 3; $j++)
            echo $sq[$i][$j] . " ";
        echo "\n";
    }
}
 
// Driver Code
$sq = array(array(0, 7, 6),
            array(9, 0, 1),
            array(4, 3, 0));
 
printFilledDiagonal($sq);
 
// This code is contributed
// by Akanksha Rai
?>


Javascript




<script>
    // Javascript program to fill blanks with numbers
     
    // Function to print the original matrix
    function printFilledDiagonal(sq)
    {
        // Calculate the sum of all the elements
        // of the matrix
        let sum = 0;
        for (let i = 0; i < 3; i++)
            for (let j = 0; j < 3; j++)
                sum += sq[i][j];
 
        // Required sum of each row (from the approach)
        sum /= 2;
 
        for (let i = 0; i < 3; i++) {
 
            // Row sum excluding the diagonal element
            let rowSum = 0;
            for (let j = 0; j < 3; j++)
                rowSum += sq[i][j];
 
            // Element that must be inserted at
            // diagonal element of the current row
            sq[i][i] = sum - rowSum;
        }
 
        // Print the updated matrix
        for (let i = 0; i < 3; i++) {
            for (let j = 0; j < 3; j++)
                document.write(sq[i][j] + " ");
            document.write("</br>");
        }
        return 0;
    }
     
    let sq = [
              [ 0, 7, 6 ],
              [ 9, 0, 1 ],
              [ 4, 3, 0 ]
              ];
   
    printFilledDiagonal(sq);
 
</script>


Output

2 7 6 
9 5 1 
4 3 8 
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments