Monday, January 13, 2025
Google search engine
HomeData Modelling & AIDistance between two parallel Planes in 3-D

Distance between two parallel Planes in 3-D

You are given two planes P1: a1 * x + b1 * y + c1 * z + d1 = 0 and P2: a2 * x + b2 * y + c2 * z + d2 = 0. The task is to write a program to find distance between these two Planes.
 

Examples : 
 

Input: a1 = 1, b1 = 2, c1 = -1, d1 = 1, a2 = 3, b2 = 6, c2 = -3, d2 = -4
Output: Distance is 0.952579344416

Input: a1 = 1, b1 = 2, c1 = -1, d1 = 1, a2 = 1, b2 = 6, c2 = -3, d2 = -4
Output: Planes are not parallel 

 

Approach :Consider two planes are given by the equations:- 
 

P1 : a1 * x + b1 * y + c1 * z + d1 = 0, where a1, b1 and c1, d1 are real constants and 
P2 : a2 * x + b2 * y + c2 * z + d2 = 0, where a2, b2 and c2, d2 are real constants.

The condition for two planes to be parallel is:- 
 

=> a1 / a2 = b1 / b2 = c1 / c2

Find a point in any one plane such that the distance from that point to the other plane that will be the distance between those two planes. The distance can be calculated by using the formulae: 
 

Distance = (| a*x1 + b*y1 + c*z1 + d |) / (sqrt( a*a + b*b + c*c))

Let a point in Plane P1 be P(x1, y1, z1), 
put x = y = 0 in equation a1 * x + b1 * y + c1 * z + d1 = 0 and find z. 
=> z = -d1 / c1 
Now we have coordinates of P(0, 0, z) = P(x1, y1, z1). 
Distance of point P to Plane P2 will be:- 
 

Distance = (| a2*x1 + b2*y1 + c2*z1 + d2 |) / (sqrt( a2*a2 + b2*b2 + c2*c2)) 
= (| a2*0 + b2*0 + c2*z1 + d2 |) / (sqrt( a2*a2 + b2*b2 + c2*c2)) 
= (| c2*z1 + d2 |) / (sqrt( a2*a2 + b2*b2 + c2*c2)) 
 

Below is the implementation of the above formulae: 
 

C++




// C++ program to find the Distance
// between two parallel Planes in 3 D.
#include <bits/stdc++.h>
#include<math.h>
 
using namespace std;
 
// Function to find distance
void distance(float a1, float b1,
              float c1, float d1,
              float a2, float b2,
              float c2, float d2)
{
    float x1, y1, z1, d;
    if (a1 / a2 == b1 / b2 &&
        b1 / b2 == c1 / c2)
    {
        x1 = y1 = 0;
        z1 = -d1 / c1;
        d = fabs(( c2 * z1 + d2)) /
           (sqrt(a2 * a2 + b2 *
                 b2 + c2 * c2));
        cout << "Perpendicular distance is "
             << d << endl;
    }
    else
        cout << "Planes are not parallel";
    return;
}
 
// Driver Code
int main()
{
    float a1 = 1;
    float b1 = 2;
    float c1 = -1;
    float d1 = 1;
    float a2 = 3;
    float b2 = 6;
    float c2 = -3;
    float d2 = -4;
    distance(a1, b1, c1, d1,
             a2, b2, c2, d2); // Fxn cal
    return 0;
}
 
// This code is contributed
// by Akanksha Rai(Abby_akku)


C




// C program to find the Distance between
// two parallel Planes in 3 D.
  
#include <stdio.h>
#include<math.h>
  
// Function to find distance
void distance(float a1, float b1, float c1,
            float d1, float a2, float b2,
            float c2, float d2)
{
    float x1,y1,z1,d;
    if (a1 / a2 == b1 / b2 && b1 / b2 == c1 / c2)
    {
        x1 = y1 = 0;
        z1 =-d1 / c1;
        d = fabs(( c2 * z1 + d2)) / (sqrt(a2 * a2 + b2 * b2 + c2 * c2));
        printf("Perpendicular distance is %f\n", d);
    }
    else
        printf("Planes are not parallel");
    return;
}
   
// Driver Code
int main()
{
    float a1 = 1;
    float b1 = 2;
    float c1 = -1;
    float d1 = 1;
    float a2 = 3;
    float b2 = 6;
    float c2 = -3;
    float d2 = -4;
    distance(a1, b1, c1, d1, a2, b2, c2, d2);     // Fxn cal
    return 0;
}
   
// This code is contributed 
// by Amber_Saxena.


Java




// Java program to find the Distance
// between two parallel Planes in 3 D.
import java .io.*;
import java.lang.Math;
 
class GFG
{
     
// Function to find distance
static void distance(float a1, float b1, float c1,
                     float d1, float a2, float b2,
                     float c2, float d2)
{
     
    float x1,y1,z1,d;
    if (a1 / a2 == b1 / b2 &&
        b1 / b2 == c1 / c2)
    {
        x1 = y1 = 0;
        z1 =-d1 / c1;
        d = Math.abs(( c2 * z1 + d2)) /
            (float)(Math.sqrt(a2 * a2 + b2 *
                              b2 + c2 * c2));
        System.out.println("Perpendicular distance is "+ d);
    }
    else
        System.out.println("Planes are not parallel");
}
 
// Driver code
public static void main(String[] args)
{
    float a1 = 1;
    float b1 = 2;
    float c1 = -1;
    float d1 = 1;
    float a2 = 3;
    float b2 = 6;
    float c2 = -3;
    float d2 = -4;
    distance(a1, b1, c1, d1,
             a2, b2, c2, d2);// Fxn cal
}
}
 
// This code is contributed
// by Amber_Saxena.


Python




# Python program to find the Distance between
# two parallel Planes in 3 D.
 
import math
 
# Function to find distance
def distance(a1, b1, c1, d1, a2, b2, c2, d2):
     
    if (a1 / a2 == b1 / b2 and b1 / b2 == c1 / c2):
        x1 = y1 = 0
        z1 =-d1 / c1
        d = abs(( c2 * z1 + d2)) / (math.sqrt(a2 * a2 + b2 * b2 + c2 * c2))
        print("Perpendicular distance is"), d
    else:
        print("Planes are not parallel")
 
# Driver Code
a1 = 1
b1 = 2
c1 = -1
d1 = 1
a2 = 3
b2 = 6
c2 = -3
d2 = -4
distance(a1, b1, c1, d1, a2, b2, c2, d2)     # Fxn cal


C#




// C# program to find the Distance
// between two parallel Planes in 3 D.
using System;
 
class GFG
{
     
// Function to find distance
static void distance(float a1, float b1,
                     float c1, float d1,
                     float a2, float b2,
                     float c2, float d2)
{
    float z1, d;
    if (a1 / a2 == b1 / b2 &&
        b1 / b2 == c1 / c2)
    {
         
        z1 =-d1 / c1;
        d = Math.Abs((c2 * z1 + d2)) /
            (float)(Math.Sqrt(a2 * a2 + b2 *
                              b2 + c2 * c2));
        Console.Write("Perpendicular distance is " + d);
    }
    else
        Console.Write("Planes are not parallel");
}
 
// Driver code
public static void Main()
{
    float a1 = 1;
    float b1 = 2;
    float c1 = -1;
    float d1 = 1;
    float a2 = 3;
    float b2 = 6;
    float c2 = -3;
    float d2 = -4;
    distance(a1, b1, c1, d1,
             a2, b2, c2, d2);// Fxn cal
}
}
 
// This code is contributed
// by ChitraNayal


PHP




<?php
// PHP program to find the Distance
// between two parallel Planes in 3 D
 
// Function to find distance
function distance($a1, $b1, $c1,
                  $d1, $a2, $b2,
                  $c2, $d2)
{
    if ($a1 / $a2 == $b1 / $b2 &&
        $b1 / $b2 == $c1 / $c2)
    {
        $x1 = $y1 = 0;
        $z1 =- $d1 / $c1;
        $d = abs(($c2 * $z1 + $d2)) /
            (sqrt($a2 * $a2 + $b2 *
                  $b2 + $c2 * $c2));
        echo "Perpendicular distance is ", $d;
    }
    else
        echo "Planes are not parallel";
}
 
// Driver Code
$a1 = 1;
$b1 = 2;
$c1 = -1;
$d1 = 1;
$a2 = 3;
$b2 = 6;
$c2 = -3;
$d2 = -4;
distance($a1, $b1, $c1, $d1,
         $a2, $b2, $c2, $d2);    
 
// This code is contributed
// by Amber_Saxena.
?>


Javascript




<script>
 
// Javascript program to find the Distance
// between two parallel Planes in 3 D.
 
// Function to find distance
function distance(a1, b1, c1,
                     d1,  a2, b2,
                     c2, d2)
{
     
    let x1,y1,z1,d;
    if (a1 / a2 == b1 / b2 &&
        b1 / b2 == c1 / c2)
    {
        x1 = y1 = 0;
        z1 =-d1 / c1;
        d = Math.abs(( c2 * z1 + d2)) /
            (Math.sqrt(a2 * a2 + b2 *
                              b2 + c2 * c2));
        document.write("Perpendicular distance is "+ d);
    }
    else
        document.write("Planes are not parallel");
}
 
// Driver Code
 
     let a1 = 1;
    let b1 = 2;
    let c1 = -1;
    let d1 = 1;
    let a2 = 3;
    let b2 = 6;
    let c2 = -3;
    let d2 = -4;
    distance(a1, b1, c1, d1,
             a2, b2, c2, d2);// Fxn cal
            
</script>


Output

Perpendicular distance is 0.952579

Time Complexity: O(logn) as it is using inbuilt sqrt function
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments